集合と位相第一演習 第5回 (2014.06.11) 1. 集合 A1 と A2 の濃度が等しく、また、B1 , B2 も互いに濃度が等しいとする。 (1) A1 ∩ B1 = A2 ∩ B2 = ∅ のとき、A1 ∪ B1 と A2 ∪ B2 の濃度が等しいことを示せ。 (2) A1 × B1 と A2 × B2 の濃度が等しいことを示せ。 (3) B1A1 と B2A2 の濃度が等しいことを示せ。 2. 閉区間 [0, 1] と 開区間 (0, 1) が対等である事を全単射を構成する事で直接示せ。 3. 次の集合の濃度が等しい事を示せ。 (1) N × N と N (2) Q と N (3) a > 1 とし、半開区間 (0, 1] と 開区間 (0, a) 4. 単位円 S 1 := {(x, y) ∈ R2 ; x2 + y 2 = 1} の濃度は ℵ であることを示せ。 5. 集合 A, B, C に対して AB×C と (AB )C は対等であることを示せ。これを利用して、RQ と R が対等である事を示せ。 レポート 問題 1. 素数全体の集合の濃度は可算濃度である事を示せ。 2. 実数 a < b に対して、閉区間 [a, b] の濃度が ℵ であることを示せ。 3. 単位円の内部 D := {(x, y) ∈ R2 ; x2 + y 2 < 1} の濃度は ℵ であることを示せ。 4. 以下の集合を、有限集合、可算集合、非可算集合に分類せよ(簡単でいいので、理由も書 く事)。 A = {0, 1}, A × A, AA , N, Z, Q, R, R × R, C, Z × Z, N × N × N, 2N , 2R , RR 締め切り 6月17日(火) 午後5時 次回の演習は、6月25日(水)です。
© Copyright 2024 ExpyDoc