Aufgabe1 s:=(x,n)->PI^2/3+4*sum((-1)^k/k^2*cos(k*x),k=1..n) k n 2 - 1 + 4 x, n coskx 2 3 k=1 k plot(s(x,8),x=-4..3*PI) y 9 8 7 6 5 4 3 2 1 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 x Aufgabe2 assume(kinZ_) 1/2*int(exp(-I*k*PI*x),x=0..1) - ki e - 1 i 2k simplify(%) k - 1 - 1 i 2k s:=(x,n)->1/2+sum(1/((2*k+1)*PI*I)*exp(I*(2*k+1)*PI*x),k=-n-1..n) n i2k + 1x e + x, n 1 2 2 k + 1i k= -n-1 plot(s(x,20)) plot(s(x,20)) y 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 -5 -4 -3 -2 -1 0 1 2 3 4 5 x r:=(x,n)->1/2+2/PI*sum(1/(2*k+1)*sin((2*k+1)*PI*x),k=0..n) n sin2k + 1x 1 + 2 x, n 2 2k + 1 k=0 plot(r(x,20)) y 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 -5 -4 -3 -2 -1 0 1 2 3 4 5 x Aufgabe3:WirüberprüfendasParsevalscheTheoremfürunseren RechteckimpulsmitAmplitudeaundPeriodep.DiemittlereLeistung ergibtsichzua^2/2unddieSummedermittlerenLeistungenebenso s:=(x,n)->a/2+2*a/PI*sum(1/(2*k+1)*sin((2*k+1)*2*PI/p*x),k=0..n) 2 k + 12 n sin x p a + 2 a x, n 2 2k + 1 k=0 f:=x->piecewise([x>=p/2orx<0,0],[x>0andx<p/2,a]) p p x piecewise ≤ x ∨ x < 0, 0 , 0 < x ∧ x < , a 2 2 assume(p>0) 1/p*int(f(x)^2,x=0..p) 1/p*int(f(x)^2,x=0..p) 2 a if0 < p 2 simplify(%) 2 a 2 DieSummedermittlerenLeistungenergibt: a^2/4+sum(2*a^2/(PI^2*(2*k+1)^2),k=0..infinity) 2 a 2
© Copyright 2025 ExpyDoc