Matematica Generale (D-L) 23.1.2014 LEGGERE CON ATTENZIONE Su ogni foglio consegnato scrivere in stampatello maiuscolo (capital letters) e nel seguente ordine: COGNOME, NOME, NUMERO DI MATRICOLA. Scrivere le soluzioni degli esercizi 1,2,3 su un foglio e quelle degli altri esercizi su un altro foglio. I compiti consegnati in modo difforme non saranno corretti. Per ogni quesito dare adeguate spiegazioni. λx + λy − z = 0 1. Dato il sistema lineare x + λy − λz = 1 λx + y + λz = λ , dire se esistono valori di λ ∈ R tali che (a) non esistano soluzioni, (b) esistano infinite soluzioni, (c) calcolare le eventuali soluzioni per λ = −1. 2. Utilizzando la definizione di limite verificare che lim x→+∞ x+2 = 1. x 3. Scrivere l’equazione della retta tangente nel punto (1, f (1)) al grafico della 2 funzione f (x) = xex −1 . 4. Data la funzione f (x) = x2 − 4x + 3 x+1 (a) calcolarne il limite destro e il limite sinistro in x = −1, (b) dire se f (x) ha massimi relativi . Z 5. Calcolare: 1 e x x ln dx. 2 6. Data la funzione f (x, y) = cos(x − 2y), calcolare il gradiente ∇f (0, 0). 7. (In alternativa all’es.6 per gli studenti dei precedenti anni accademici ) x3 − x Calcolare lim . x→0 sin 2x
© Copyright 2025 ExpyDoc