model eamcet (medical) physics - solutions

www.eenadupratibha.net
MODEL EAMCET (MEDICAL) PHYSICS - SOLUTIONS
−
i + 3^
j
82. A = 2 ^
t
e
−
−
A
B =^
i +^
j
−
Scalar component of A along
− −
A.B
−
B = Ax = A cos θ = 
θ
n
.
a
−
B
−
Ax
h
b
( ti)
( a
)
r
up
B
− −
A .B
−
−
^
Vector component of A along B = Ax B = 
− − −
B
−
B

B
A .B B
= 
B2
d
a
=
(2 + 3)(i + j)
5
 =  (i^ +^j).
2
2
n
e
( )
( )
e
.
w
()
w
w
83. y = x tan θ
x
2
1 -  = 2 (tan 45°) 1 - 
R
6
2
= 2(1) 
3
4
u1
84.  = 
v1
1
t
e
n
4
= m
3
u
4
.
a
h
1
∴ v1 = 
v2 - v1
e= 
u1
}
u1
v2 - 
1
4

= 
2
u1
u1
u1 = 2v2 - 
2
3 u1
or v2 = 
4
b
i
t
m1u1 = m1v1 + m2v2
ra
p
u
n
e
e
.
ww
d
a
u1
m1u1 = m1  + m2 
4
4
m1
3m2
m1 =  + 
4
4
3
4
3
4
 m1 =  m2 ⇒ m1 = m2
86. Contact force is independent of friction.
w
3u1
( )
L
87. m1 = m 0, 
2
( )
L
m2 = m , 0
2
www.eenadupratibha.net
www.eenadupratibha.net
L
m3 = m L, 
2
( )
mL
0 +  + mL
2
m1x1 + m2x2 + m3x3
xc = 
m1 + m2 + m3
L
= 
2
= 
3m
L
L
m +0+ m
m1y1 + m2y2 + m3y3
2
2
L
yc =  =  = 
m1 + m2 + m3
3m
3


2 L2

L
13L2 √ 
13 L
2
2
r = xc + yc =  +  =  = 
4
9
36
6
√
√
t
e
n
.
a
h
b
i
√


88. VBottom = √ 
2gH = √ 2g(3R) = √ 6gR

∴n=6
But VBottom = √ ngR
t
a
r
p
u
d
a
n
I
2
2
TBottom = THor : TTop = (n + 1)mg : (n - 2)mg : (n - 5)mg = 7 : 4 : 1
e
e
.
w
w
1
1
 

mv2
2 k2 r2ω2
Translational KE
2
r2
2
89.  =  =  =  = 
Rotational KE
1 2
1
1
k2

Iω

Iω2
w
k2
r
.
a
h
1
2

= 
2
(
)
b
i
t
1
k2
Body having 
=

is solid cylinder.
r2
2
(
a
r
p)
)
1
90. W =  K x22 - x12
2
(
t
e
n
u
d
a
1
=  (400) 225 × 10-4 - 25 × 10-4
2
1
=  × 400 × 200 × 10-4 = 4 J.
2
n
e
e
.
ww
91.
2l
3
w
l
3
O
θ
B
A
h
Loss of energy = Work done to overcome
friction
l
mgh = µmg cos θ 
3
(
)
l
or mg l sin θ = µmg cos θ 
3
(
or µ = 3 tan θ.
www.eenadupratibha.net
)
www.eenadupratibha.net
92. In artificial satellite, there will be no gravity. Then water will have spherical
shape due to Surface Tension, since density is constant, volume remains
constant.
4
3
t
e
4Π
3
∴  Π r3 =  ⇒ r = 1 cm
n
.
a
Surface area of sphere = 4Πr2 = 4Π.
h
b
i
Fnet = F2 - F1 = a(v22 - v21)ρ
93. v1
= a(2g∆h)ρ
t
a
r
= 0.01 × 2 × 10 × 1 × 103
v2
= 200 N
p
u
d
94. At steady state QAO = QOB + QOC
a
n
3K(100 - θ) = 2K (θ - 50) + K(θ - 0)
e
e
.
w
w
300 - 3θ = 2θ - 100 + θ
100°C
A
400 = 6θ
3K
O
95. vrms =
√

3RT
 =
M
= √
2gR
ve
√




3KNAT
√
 =
M
√

3KT

.
a
h
b
i
t
m
a
r
p
vrms = Ve

3KT


m = √ 2gR
u
d
a
n
e
e
.
ww
3KT

m = 2gR
w
t
e
n
K
200°
or θ =  C.
3
w
∴
2K
50°C
B
2mgR
T= 
3K
96. W = JQ
60% Pt = Jms (∆θ)
3
5
 Pt = Jms∆θ
www.eenadupratibha.net
0°C
C
www.eenadupratibha.net
3 Pt
3
5000 × 840
∆θ =   =  ×  = 210 °C
5 Jms
5
(1)(30)(400)
1
97. Slope of V-T curve ∝ 
Pressure
t
e
Volume
while going from A to B slope
B
n
.
a
A
decreases and pressure increases.
h
b
i
θA
t
a
r
98.
θB
Temp.
p
u
d
1

1
1
1

 8

8
8 8
T
A

T
6

T
T
-A

6

12
12
A
-A


0
2
2
3
T
T
T
5T
a) For  oscillation from mean, t =  +  +  = 
8
12
6
6
12
a
n
e
e
.
w
w
w
t
e
n
3
T
T
T
4T
T
b) For  oscillation from extreme, t =  +  +  =  = 
8
6
12
12
12
3
.
a
h
5
c) For  oscillation from mean,
8
b
i
t
T
T
7T
t=  +  = 
2
12
12
a
r
p
5
T
T
4T
2T
d) For  oscillation from extreme, t =  +  =  = 
8
2
6
6
3
( a) du
n( )
e
.e
3R
99. H = n cv (dT) = (1)  10 = 15 R
2
7R
H' = n cp (dT) = (2)  5 = 35 R
2
w
w
w
H'
35 R
7
=  = 
H
15 R
3
www.eenadupratibha.net
www.eenadupratibha.net
10 sinΠx
20
 cos 96 Πt
101. y = 2A sin kx cos ωt =
2Π
Π
λ
∴ k =  =  or  = length of each loop = 20 cm
λ
20
2
x = 15 cm lies in 1st loop
↑
↓
x = 25 cm lies in 2nd loop.
Phase difference for particles in successive loops = 180°.
(
v + vο
102. n' = n 
v
)
()
b
i
t
a
r
v + 300 = 2v or v = 300 ms-1.
p
u
d
µg - 1

µg
 -1
µl
a
n
e
t
e
n
Pair
1.5 - 1
0.5 × 1.6

=  =  = -8
Pliq
1.5
-0.1
 -1
1.6
Pair
-8D
=  = 1D.
Pliq = 
-8
-8
e
.
w
w
w
1
1
1
104.  =  - 
f
v
u
1
1
=  + 
-40
∞
-1
=  or f = -40 cm
40
.
a
h
b
i
t
a
r
p
u
d
a
n
e
e
.
ww
100
100
P =  in cm =  = -2.5 D.
f
-40
βο
105. βm = 
µ
w
n
.
a
h
Here vο = gt = 300 ms-1
v + 300
∴ 2000 = 1000
v
fliq
103.  =
fair
t
e
Width of 10 fringes in air
∴ Width 10 fringes in liquid = 
µ
3 cm
=  = 2 cm
1.5
Central fringe will not shift. Hence Y coordinates are 0, 2 cm.
www.eenadupratibha.net
www.eenadupratibha.net
106.
i
sin i
sin r0
µO = 
rο
rE
t
e
sin i
sin rE
µE = 
n
.
a
Here i is same
h
b
i
O
E
sin r0 < sin rE
∴ µO > rE.
t
a
r( )
107. W = MB (cos θ1 - cos θ2)
p
u
d ()
1
W1 = MB (cos 0° - cos 60°) = MB 
2
1
W2 = MB (cos 60° - cos 90°) = MB 
2
a
n
e
e
.
w
w
∴ W2 = W1 = 8 × 10-5 J.
108.
w
BH
60° r
'
BH
BV
BV
i) For True Dip, Tan θ =  = 1
BH
ii) When rotated by 60°,
BV
For apparent dip, Tan θ' = 
'
BH
t
e
n
.
a
h
b
i
t
BV
Tan θ
Tan θ' =  =  = 2
BH Cos 60° Cos 60°
θ' = Tan-1 (2).
a
r
p
u
d
a
109. At steady state, no current flows through Capacitor Branch.
E
3
3 V, 0.5 Ω
i =  =  = 2 amp
R + r 1 + 0.5
n
e
e
.
ww
VCD = VCE = VAB = iR = 2 volt
Charge on capacitor
w
D
C
Q = CV
= (1 µF) 2 Volt
= 2 µc.
A
4Ω
1 µF
1Ω
www.eenadupratibha.net
E
B
www.eenadupratibha.net
110. ← d →
y
x
-Q1 = -2
A
t
e
Q2 = 8
n
.
a
d
1
x=  = 
Q2
5

+1
Q1
h
b
i
d
1
y=  = 
Q2
3

-1
Q1
1
1
3+5
8
x+y=  +  =  = 
5
3
15
15
t
a
r
p
u
d
111. Brown - 1
a
n
Black - 0
Green - 5
e
e
.
w
w
Resistance = 10 × 105 = 1 × 106 Ω
t
e
n
Tolerance for gold = 5%.
w
i1
.
a
h
112.
i2
b
i
t
i2
a
r
p
u
d
a
1
1
1
i1 : i2 : i3 =  :  :  = a1 : a2 : a3 = 3 : 4 : 5
R3
R1 R2
n
e
e
.
ww
i1 i2
F12 ∝ 
r1
i2 i3
F23 ∝ 
r2
Here F12 = F23
w
i1 i2
i2 i3
∴
= 
r
r
1
2
r1
i1
3
or  =  = 
r2
i3
5
www.eenadupratibha.net
www.eenadupratibha.net
113.
i
a
b
R
L
di
Va - Vb = L  + iR
dt
When current increasing L(+1) + 2 R = 8
t
e
→ (1)
When current is drcreasing L(-1) + 2 R = 4 → (2)
n
.
a
(1) + (2) gives 4R = 12 or R = 3 Ω
then L = 2 H.

114. Z =
√ R2 + (XL Xc)2
∼
Z2 = R2 + (XL ∼ Xc)2
400 = 100 + (XL ∼ Xc)2
 = 10 
∴ XL ∼ Xc = √300
√3

XL∼ Xc
10 √ 3
Tan φ =  = 
t
a
r
p
u
d
a
n
R
e
e
.
w
w
10
h
b
i

= √3
∴ φ = 60°.
t
e
n
115. KE = Kmax = E - W → (1)
When enters normally into magnetic field,
w
.
a
h
B2e2r2
KE =  → (2)
2m
b
i
t
B2e2r2
2m
∴
 =E-W
2m(E - W)
or r2 = 
B2e2

√ 2m (E - W)
r = 
Be
a
r
p
u
d
a
n
e
e
.
w( w)
1
1
1
=

=

116. For X: 
2n
16
24
∴ Number of Half life periods in 8 Hours = 4
w
T1/2
for X = 2
1
1
1
=

=

For Y: 
2n
2256
28
∴ Number of Half life periods in 8 Hours = 8
∴ T1/2
( )
www.eenadupratibha.net
for Y = 1.
www.eenadupratibha.net
117. Truth Table for given logic gate
Input
Output
A
B
Y
0
0
0
1
0
0
0
1
0
1
1
1
t
e
n
.
a
h
b
i
t
a
r
It corresponds to AND gate.
119. When Amplifiers are connected in series
p
u
d
A = (A1)(A2) = (10)(20) = 200
Voutput
a
n
∴  = Voltage amplification = 200
Vinput
e
e
.
w
w
Vout put = 200(0.01) = 2.
120. For electron revolving in circular orbit
t
e
n
KE = x
w
.
a
h
PE = -2x
TE = -x
b
i
t
Here -x = -3.4
∴ KE = x + 3.4 eV
a
r
p
PE = -2x = -6.8 eV.
u
d
a
n
e
e
.
ww
w
www.eenadupratibha.net
www.eenadupratibha.net
MODEL EAMCET (MEDICAL) CHEMISTY - SOLUTIONS
20
121. E = E0 + Ek; Given Ek = E × 
100
t
e
80
∴ E0 = E × 
100
n
.
a
h
b
i
λ
80
4
5
5
E
0 =  =  =  ; λ0 = λ ×  = 4000 ×  = 5000 A°
E
λ0
100
5
4
4
t
a
r
122. Palladium; atomic no: 46;
Electronic configuration 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10

p
u
d
126. PbO2 is oxidising agent: PbO2 + 4 HCl → PbCl2 + Cl2 + 2 H2O
PbO is basic oxide. 2 PbO + 4 HCl → 2 PbCl2 + 2 H2O
a
n
129. As molecular weight of the gas decreases, the curve shifts towards right hand
side i.e., higher speed.
e
e
.
w
w √
VCH tX
4

=
VX tCH4
w
130.

MX
360 × 10
 ;  =
MCH4 120 × 15
√
t
e
n

MX

16
.
a
h
√

MX
 = 2; MX = 2 × 2 × 16 = 64, X = SO2
16
131. Pi = Pi°. Xi(l) ; Pi = Ptotal. Xi(g);
b
i
t
a
r
p
Ptotal
500
5
XB(l)
More Volatile is B.  =  =  = 
XB(g)
PB
600
6
u
d
a
1000w
= Kf. m.i = Kf  i
exp
gmwW
n
e
e
.
ww
132. ∆Tf
∆Tfexp
gmw.W
0.96
60 × 30
i =  .  =  × 
1000 w
4.8
1000 × 6
Kf
= 0.6
w
(1 - 0.6)2
1- i
x =  . n =  = 0.8; P = 100 α = 80
n- 1
2- 1
0.06
[P]
0.06
[R]
133. Ecell = E°cell -  log  ; Ecell - E°cell =  log 
n
[R]
n
[P]
www.eenadupratibha.net
www.eenadupratibha.net
0.06
1
0.06
1)  log  =  log 1022 = 0.22
6
(10-2)2 (10-3)6
6
t
e
0.06
1
0.06
2)  log 
=
 log 108 = 0.24
2
2
(10-2)(10-3)2
0.06
(10-3)2
3)  log  = 0
6
(10-2)3
n
.
a
h
b
i
0.06
(10-3)2
4)  log  = 0.06.
6
(10-2)6
t
a
r
134. For compound CXHY
p
u
d
Y
∆HComb + ∆fH = X. HCO +  HH2O
2
2
a
n
6
∆Hf C6H6 = 6 (-394) +  (-285) - (-3267) = + 48 KJ mol-1.
2
135.
e
e
.
w
w
Answer: 10 : 1.
t
e
n
136. Stage I Calculation of KC
w
2 HI (g)
.
a
h
H2 (g) + I2 (g)
i
X
X
X
X
r - +  + 
2
4
4

X
X
X



e
2
4
4
b
i
t
a
r
p
u
d
a
X X
. 
[H2] [I2]
4 4
1
Kc = 
=

=

[HI]2
4
X X
 . 
2
2
n
e
e
.
ww
w
www.eenadupratibha.net
www.eenadupratibha.net
Stage II: Mole of HI added 'n'
2 HI (g)
H2 (g) + I2 (g )
t
e
X
X X
 +n  
2
4
4
X
X
X
r -  +  +
2
4
4

X
X


e n
2
2
n
.
a
i
1
Kc = 
4
h
b
i
t
a
r
X X
 . 
2 2
= 
n2
X X
n2 =  .  . 4 = X2
2 2
p
u
d
a
n
e
e
.
w
w
n=X
t
e
n
137. For zero order reaction unit of rate and rate constant same; mol L-1 S-1.
w
A
B
ohv
thv
n ( atoms in hcp)
n
2n
138.
4
4n
.
a
h
b
i
t
3
: 3n
4
n: n
3
4n
2
∴  =  (2n)
3
3
a
r
p
u
d
a
n
e
e
.
ww
2
atoms 'A' are in  of thv.
3
VO (STP)
0.56
2
149. Vol. Strength =  =  = 0.112
5
VH2O2
w
11.2 V ≡ 34 g L-1; 0.112 V = 0.34 g L-1
= 340 mg L-1 = 340 ppm.
www.eenadupratibha.net
www.eenadupratibha.net
t
e
n
.
a
h
b
i
t
a
r
p
u
d
a
n
e
e
.
w
w
t
e
n
w
.
a
h
b
i
t
a
r
p
u
d
a
n
e
e
.
ww
w
www.eenadupratibha.net