¸É3 ¦³Á¸¥ª·¸ª·´¥ 3.1 Âε¨°¸ÉÄoĵ¦«¹¬µ ĵ¦«¹¬µ¦´Ê¸ÊÁ}µ¦«¹¬µ¹ ¨¦³ °Á·»Á¨ºÉ°¥oµ¥n°´¸nµÁ·¸ÉÂo¦· Ã¥Äo´ªÂ¦´Ê®¤2 ´ªÅoÂnÁ·»Á¨ºÉ°¥oµ¥»·£µÁ° (NF) ¨³´¸nµÁ·¸ÉÂo¦· (REER)Ã¥Äo¦°Âª· °¤´Á¨-Á¢¨¤¤·É¨³Âª· °°¦r»r¤µ¦³¥»rÄo´ ª·Á¸É¥ª´´¸nµÁ·¸ÉÂo¦·Á¡ºÉ°°·µ¥¹¨ °Á·»Á¨ºÉ°¥oµ¥¦³®ªnµ¦³Á«Â¨³ °´¦µÂ¨Á¨¸É¥Ã¥Âε¨°ªµ¤´¤¡´r °Á·»Á¨ºÉ°¥oµ¥´´¸nµÁ·¸ÉÂo¦·Â Åo´¸Ê REER f ( NFi ) Ã¥¸É REER º°´¸nµÁ·¸ÉÂo¦· NFi º°Á·»Á¨ºÉ°¥oµ¥»·£µÁ° 3.2 ª·¸µ¦«¹¬µ ÄoÁ·µÁ«¦¬¤··¸ÉÁ¦¸¥ªnµ Vector Autoregression Model (VAR) Ã¥ o°¤¼¨¸ÉÄoÄ Âε¨°´ÊÁ}´ªÂ¦Ä¨´¬³ °°»¦¤Áª¨µ( Time Series) oª¥Á®»¸Éªnµµ¦¦oµ Âε¨° ° VAR ´ÊŤnÅo¥¹µ¤§¬¸¸ÉÁ}æ¦oµ( Structure) ÁnµÄ´Án Âε¨°¦³¤µ¦¸ÉÁ¸É¥ª¡´´ (Simutaneous Equation Model) °¸´Êµ¤§¬¸ ° Âε¨°Â¨oªVAR ¥´Ä®o¨µ¦¦³¤µµ¦®¦º°Îµµ¥ (Forcast) ¸É¸ªnµª·¸ °Âε¨°¸É Á}æ¦oµÁnÂε¨°¦³¤µ¦¸ÉÁ¸É¥ª¡´´¸É¥»n¥µÂ¨³Á}äÁ¨¸Éµ¤µ¦´µ¦ ´{®µ Simultaneity Bias Åo¸(Gujarati, 2003) ¹Éµ¦ÄoÂε¨° VAR´Ê¤¸ªµ¤ ÅoÁ¦¸¥ÄÂn °Ä¦¸¸ÉÁ¦µ°µ³Å¤n¦µªµ¤´¤¡´r¸ÉÂo¦·Ä¦³®ªnµ´ªÂ¦´Ê®¤¸É 50 Á¸É¥ª o°´®¦º°°µ³Å¤n¦µªnµ´ªÂ¦ÄÁ} Endogenous Variable ®¦º°Exogenous Variable ´ÂnÂn¦µªnµÃ¥¦ª¤Â¨oª´ªÂ¦»´ªÄÂε¨°VAR¤¸¨n°´ ´´Ê¹µ¤µ¦ÄoÂε¨°VARĵ¦«¹¬µ¹¨¦³®¦º°ªµ¤´¤¡´r °´ªÂ¦ ´ªÄ´ª®¹ÉÄÂε¨°n°´ªÂ¦°ºÉÄÂε¨°ÅoÃ¥ª·¸nµÇÅoÂnµ¦ª·Á¦µ³®r ··¦·¥µ°°n°ªµ¤Â¦¦ª (Impulse Response Function) µ¦Â¥nª °ªµ¤ ¦¦ª(Variance Decomposition) Ã¥¤·o°´ª¨´µ¦´·Äĵ¦¦oµ¤µ¦Ä Structural Model Á¡¦µ³ÄVAR ³Ä®o´ªÂ¦»´ªÁ} Endogenous Variable°¸´Êĵ¦Äo Simutaneous Equation ModelĦ¸¸ÉŤn¦µªµ¤´¤¡´r¸ÉÂo¦· °´ªÂ¦nµÇÄ Âε¨°°µÁ·{®µÁ¤ºÉ°Îµµ¦´·Ê®¦º°Á¡·É¤´ªÂ¦µ´ªÄ¦³¤µ¦¹É°µÁ·{®µ ÁnIdentification Error Åo ĵ¦«¹¬µ¨¦³ °Á·»Á¨ºÉ°¥oµ¥n°´¸nµÁ·¸ÉÂo¦·Ã¥Äo o°¤¼¨»·¥£¼¤·Á} o°¤¼¨°»¦¤Áª¨µ¹Éo°Îµ o°¤¼¨¤µ°¨´¬³·É ° o°¤¼¨®¦º°µ¦° unit root ¨³ 嵦¦´ o°¤¼¨Ä®o¤¸¨´¬³·É(Stationary) ®¦º°Å¤n¤¸ Unit Roots ¤·Án´Ê³ÎµÄ®oÁ· Spurious Problem Åo ³´Ê¹o°°¼ªnµ o°¤¼¨°»¦¤Áª¨µ¸É夵Äo´Ê¤¸¨ ° Trend ¤°¥¼n ®¦º°Å¤n¹o°° Unit Roots ´ o°¤¼¨ °´ªÂ¦»´ª Ã¥ª·¸ Augmented Dickey-Fuller (ADF) Test ¹Éoµ¨µ¦°´Ê¦µ°°¤µªnµ´ªÂ¦Ä¤¸ Unit Roots ªnµ o°¤¼¨ °»¦¤Áª¨µ °´ªÂ¦´¨nµª¸É夵Äo´ÊŤnÁ} Stationary ¨nµªº°¤¸¨ ° Trend °¥¼nÄ °»¦¤ ° o°¤¼¨´´Ê´ªÂ¦´¨nµªÄÂε¨°´Ê°µ³o°ÄoÁ}¨´¬³ ° Difference ¹ɳo°Îµµ¦°n°Åªnµ´ªÂ¦´¨nµª´ÊÁ} Stationary ¸ÉDifference ¸ÉOrder ÄÃ¥Äoª·¸µ¦ ° Augmented Dickey-Fuller (ADF) Test ÁnÁ·¤ ¨³Á¨º°Lag ®¦º° ªµ¤¨nµoµ¸ÉÁ®¤µ³¤ µ´Ê夵 °ªµ¤´¤¡´rĦ³¥³¥µª®¦º°µ¦®µ Cointegrationµ¦ ¦oµ Âε¨°Vector Autoregression Model (VAR) ¨³»oµ¥µ¦Äo¨µ¦¦³¤µnµ´Êµ¦ ª·Á¦µ³®r··¦·¥µ°°n°ªµ¤Â¦¦ª (Impulse Response Function) ¨³µ¦Â¥nª °ªµ¤Â¦¦ª(Variance Decomposition) Ã¥Ân¨³ ´Ê°¤¸¦µ¥¨³Á°¸¥´n°Å¸Ê 3. 2.1µ¦°Unit Root ĵ¦«¹¬µ¸ÊÄo o°¤¼¨µ¦¦³¤µnµ¤¸¨´¬³Á}°»¦¤Áª¨µ´ªÂ¦{»´Â¨³Ä °¸¤´¤¸ªµ¤´¤¡´r´ÎµÄ®o´ªÂ¦¤¸¨´¬³Å¤n·É (Non-stationary) °µ´Ê®µ´ªÂ¦ 51 ¸ÉÄoĵ¦¦³¤µnµÄÂε¨°¤¸»¤´·Å¤n·É³ÎµÄ®oÁ·{®µªµ¤´¤¡´r¸ÉŤn Âo¦·Spurious ®¦º°´ªÂ¦Á®¤º°¤¸ªµ¤´¤¡´r´ÂnĪµ¤Á}¦·Å¤n´¤¡´r´ ´´Ê ´Ê°Â¦n°µ¦¦³¤µnµÁ¦µ³o°¡·µ¦µ¨´¬³ o°¤¼¨Ã¥° »¤´· Stationary ®¦º°Unit root oª¥µ¦°Augmented Dickey-Fuller (ADF) ¡·µ¦µ ¤µ¦°¥3 ¦¼Â¸ÉÂnµ´Äµ¦°ªnµ¤¸ Unit root ®¦º°Å¤n¹É3 ¤µ¦´¨nµª ÅoÂn p ' Xt TX t 1 ¦Ii ' X t i H t (random walk process) (3.1) i 1 p ' Xt D TX t 1 ¦I ' X t i H t (random walk with drift) (3.2) i 1 p ' Xt D E TX t 1 ¦Ii ' X t i H t (random walk with drift y (3.3) i 1 and linear time trend) Ã¥µ¦°¤¤·µÅo´¸Ê H0 :T 0 ´ªÂ¦Á} H1 : T 0 ´ªÂ¦Á} Non-stationary Stationay µ¦° Unit root ®µµ¤µ¦·Á¤¤·µÅo®¤µ¥ªµ¤ªnµ´ªÂ¦´Ê¤¸ ¨´¬³Á}Stationay ¤¸Integration of order zero´Éº°¹ÉĦ¸¸ÉÁ} Non-stationary Á¦µ µ¤µ¦Îµnªnµ °´ªÂ¦´Ê¨³°Unit root °¸¦´Ê®¦º°ªnµ·Á¤¤·µ¹É Á¦µ³Á¦¸¥´ªÂ¦¸ÉεnªnµÂ¨oªStationary ¸É¨Îµ´¸É p ªnµ I ( p) ®¦º°Integrated Order pth 3.2.2 µ¦Á¨º°ªµ¤¨nµoµ(Lag) ¸ÉÁ®¤µ³¤ ĵ¦«¹¬µ¸ÊÄoÁr Akaike Information Criteria (AIC) ¨³ 6FKZDU]us Bayesian Information Criterion (SC, BIC ®¦º° SBC) Á}Árĵ¦¡·µ¦µªµ¤Á®¤µ³¤ °Îµª ªµ¤¨nµoµ®¦º°Lag °Âε¨°¤¸¼¦´¸Ê 52 AIC Ã¥¸É VÖ 2 º° log VÖ 2 2 pq T nµ¦³¤µ °ªµ¤Â¦¦ª ° SC log VÖ 2 2 (3.4) et pq log T T (3.5) Ár´Ê°Á}Ár¸É°µ«´¥ªµ¤ª¦³Á}( likelihood-based) ¨³ÂÄ®oÁ®È¹ ªµ¤¤»¨(¸É¤¸¨Äµ¦´ oµ¤) ( trade off) ¦³®ªnµvILWw¹Éª´Ã¥nµ °ªµ¤ª¦³Á} ¨³ v¦³®¸É (parsimonyw¹Éª´Ã¥Îµª °¡µ¦µ¤·Á°¦r°·¦³p+q oµnµ¸É¼ÎµÅ¦ª¤°¥¼n ÄÂε¨°oª¥Îµª °¡µ¦µ¤·Á°¦r´¨nµªÈ³Á¡·É¤ ¹ÊÁ} p+q+1 宦´®¨´ÁrÄ µ¦´·ÄÁ¨º°Âε¨°Èº°Á¦µ³Á¨º°Âε¨°¸É¤¸nµ AIC ®¦º° SC ¸É¤¸nµo°¥¸É» nµ AIC ¨³ SC ³o°¥µµÁ®»´n°Å¸Êº°¤¸ªµ¤Â¦¦ªÂ¨³ªµ¤Â¦¦ª¦nª¤o°¥¤¸ εª °´ªÂ¦Â¨³ÎµªLag o°¥Â¨³»oµ¥¤¸Îµª o°¤¼¨Äµ¦¦³¤µnµ¤µ Ä ³¸ÉÁr´Ê°´¨nµª¤¸ªµ¤Ânµ´Ä®oÁ¨º°ÄoSC Ūon°Á¡¦µ³ªnµSC ¤¸ »¤´·ªnµ SC ³Á¨º°Âε¨°¸É¼o°Áº°Ân° 宦´ AIC ´Ê¤¸ÂªÃo¤¸É³Á} ¨´¬³Á·Áoε´ÄÂε¨°¸É¤¸¡µ¦µ¤·Á°¦r¤µÁ·Å °µ´Êĵ¦«¹¬µ¸Ê³Îµ µ¦Á¦¸¥Á¸¥¨µ¦Á¨º°Lag ´Ár°ºÉoª¥º°Final Prediction Error (FPE) ¨³HannanQuinn Information Criterion (HQIC) ¹ÉÄ®oªµ¤®¤µ¥Ä¨´¬³Ä¨oÁ¸¥´ 3.2.3 µ¦°®µCointegration ª·¸µ¦ °Johansen Johansen (1988) ¨³Stock and Watson (1988) ÅoÁ°´ª¦³¤µnµÂ maximum likelihood (maximum likelihood estimator) ¹ÉεĮoµ¤µ¦®¨¸Á¨¸É¥µ¦Äo´ª¦³¤µnµ 2 ´Ê°Åo( two-step estimators) ¨³µ¤µ¦¸É³¦³¤µnµÂ¨³°µ¦¤¸°¥¼n¦· ° cointegrating vectors ®¨µ¥vectors Åo°µ¸Ê¨oªµ¦°´¨nµª¥´ÎµÄ®oÁ¦µµ¤µ¦ °µ¦Än o°Îµ´ °¡µ¦µ¤·Á°¦r ° cointegrating vectors ¨³ªµ¤Á¦Èª °µ¦¦´´ª (speed of adjustment) Åo°¸oª¥ °¥nµÅ¦Èµ¤´Êª·¸µ¦ ° Johansen (1988) ¨³ Stock and Watson (1988) nµÈ°µ«´ ¥ ªµ¤´¤¡´r¦³®ªnµ rank °Á¤¦·r¨³ characteristic roots °Á¤¦·r´¨nµª°¥nµ¤µ 53 ¨³Á¡ºÉ°¸É³Á oµÄ ´Ê° °ª·¸µ¦ ° Johansen (1988) ¹Á}µ¦¦»ª·¸µ¦Â¨³ ´Ê° ° Johansen (1988) ´¸Ê ¡·µ¦µautoregressive process yt A1 yt 1 A2 yt 2 ... Ap yt p H t (3.6) µ¤µ¦(3.6) Á°µ yt 1 Ũ°°´Ê° oµ³Åo 'yt ( A1 I ) yt 1 A2 yt 2 ... Ap yt p H t (3.7) µ¤µ¦(3.7) ªÁ oµÂ¨³¨°°µ ªµ¤º°oª¥ ( A I ) yt 2 ³Åo 'yt ( A1 I ) yt 1 ( A2 A1 I ) yt 2 A3 yt 3 ... Ap yt p H t (3.8) εÁn¸ÊÅÁ¦ºÉ°¥Ç³Åo p 1 'yt ¦S 'y i t i Syt p H t (3.9) i 1 Ã¥¸É S p ª º « I ¦ Ai » i 1 ¬ ¼ ·Éε´Ä¤µ¦ (3.9) Ⱥ°nµ¨Îµ´´Ê (rank) °Á¤¦·r S ´Éº°nµ¨Îµ´´Ê (rank) ° S ³Ánµ´Îµª °cointegrating vector ¹Éµ¤µ¦ÂÅoĦµ¥¨³Á°¸¥´¸Ê 1. oµnµ¨Îµ´´Ê(rank) Ánµ´«¼¥rÁ¤¦·r S ³Á}Á¤¦·r«¼¥r¨³¤µ¦(3.9) Ⱥ°Âε¨°VAR Ħ¼ °¨nµ¸É®¹É(first difference) 2. oµnµ¨Îµ´´Ê(rank) ° S Ánµ´ n (¹ÉȺ° ¤¸nµ¨Îµ´´Ê (rank) ÁȤ¸É®¦º°¸É Á¦¸¥ªnµfull rank ¹Évector process ³¤¸¨´¬³·É¨³Á} VAR Älevel ¹Éº° ¤µ¦(3.6) 54 3. oµnµ ¨Îµ´´Ê(rank) ° S Ánµ´1 Á¦µÈ³¤¸ cointegrating vector Á¡¸¥vector Á¸¥ªÂ¨³ Syt p Ⱥ°{´¥µ¦¦´´ª °ªµ¤¨µÁ¨ºÉ°( error-correction factor) 4. Ħ¸¹É1 < rank ( S ) < n Á¦µÈ³¤¸ cointegrating vectors ®¨µ¥cointegrating vectors 宦´ µ¦° Cointegration ®¦º°µ¦°ªµ¤´¤¡´r¦³¥³¥µª¦³®ªnµ´ª ¦Á¡ºÉ°Äoĵ¦Á¨º°Âε¨°¸ÉÄoĵ¦¦³¤µnµ¦³®ªnµ VAR ¨³ VEC ĵ¦«¹¬µ¸Ê ÅoÄoµ¦° Johansen Trace °Johansen and Juselius (1990) Á¡ºÉ°®µÎµª ° ªµ¤´¤¡´r Cointegration Åooª¥µ¦Äoµ¦° Likelihood Ratio test statistic £µ¥Äo o° ¤¤·µ®¨´º° ¨³ Ã¥¸É H 0 : rank() r H1 : rank() r t1 0 º°Á¤¦·r´¤¦³··Í °ªµ¤´¤¡´r¦³®ªnµ r 'Yt ¨³ 'Yt 1 Ä Âε¨°VEC º°ÎµªRank °Á¤¦·r Ã¥Á¤ºÉ°nµ° Trace ¤µªnµnµª·§ÎµÄ®oµ¤µ¦·Á¤¤·µ®¨´ (null hypothesis) ®¤µ¥ªµ¤ªnµ´ªÂ¦Ä Yt Ťn¤¸ªµ¤´¤¡´r´ ®µnµ°Trace ¤¸nµo°¥ªnµ nµª·§³¥°¤¦´¤¤·µ®¨´ ®¤µ¥ªµ¤ªnµ´ªÂ¦Ä Yt ¤¸ªµ¤´¤¡´r´°¥nµo°¥®¹É ªµ¤´¤¡´r¨Îµ´n°ÅȳÁ}µ¦°ÊεåÄo¤¤·µº° H 0 : rank() ¨³ Ã¥¸É r H1 : rank() t r 1 º°Á¤¦·r´¤¦³··Í °ªµ¤´¤¡´r¦³®ªnµ r Âε¨°VEC º°ÎµªRank °Á¤¦·r 'Yt ¨³ 'Yt 1 Ä 55 ¹ÉĦ¸¸Éµ¤µ¦·Á¤¤·µ¦¦³´É Full Rank Á¦µµ¤µ¦Äo Âε¨°VAR ĵ¦¦³¤µnµ Åo®µÅ¤nÄn Full Rank ¤¸ªµ¤´¤¡´r¦³®ªnµ´ªÂ¦´Ê °¹ÉεĮoµ¤µ¦®µªµ¤´¤¡´rĦ³¥³´Ê¨³¦³¥³¥µªÅo Á¦µ³ÄoÂε¨°VEC  3.2.4 Âε¨°Vector Autoregression Á¡ºÉ°°Îµµ¤ °µ¦«¹¬µµ¦«¹¬µ¸ÊÅoε®Âε¨° VAR Á}Âε¨°¸É Á®¤µ³¤Á¡ºÉ°Äoĵ¦«¹¬µÁºÉ°µ¨´¬³Â¨³ªµ¤´¤¡´r °´ªÂ¦°µÅ¤n´Á¨³Á} ªµ¤´¤¡´rÄÁ·¡¨ª´¦¦³°´ o°¤¤·Ä®o´ªÂ¦Ân¨³´ªÅ¤nn¨n°´ªÂ¦°ºÉÇ ÄnªÁª¨µÁ¸¥ª´°¸´Êµ¦«¹¬µ¦´Ê¸Ênª®¹ÉÁ¡ºÉ°°Îµµ¤¹¨¦³ °Á·» Á¨ºÉ°¥oµ¥¸É¤¸n°´¸nµÁ·¸ÉÂo¦· ¹ µ·«µ¦³¥³Áª¨µªµ¤°¥¼n( Persistence) ¨³ ´nª °¨¦³¸É¤¸n°´¸nµÁ·¸ÉÂo¦· ÁºÉ°µªµ¤´¤¡´r °´ªÂ¦Ân¨³´ª¤¸ªµ¤´¤¡´r¸ÉŤnÂn°Â¨³n¨¦³ ¦³®ªnµ´´Êµ¦Â¨³µ°o°¤ o°¤¤·¦³µ¦®¹É¸ÉεÁ}¨³Á®¤µ³¤n°µ¦«¹¬µÄ ¦´Ê¸Êº°´ªÂ¦Ân¨³´ª³Å¤nn¨¦³n°´ªÂ¦´ª°ºÉÄnªÁª¨µÁ¸¥ª´ ®¦º°Å¤nn¨ ¦³°¥nµ´¸Á¤ºÉ°´ªÂ¦®¹ÉÁ¨¸É¥Â¨Á¡¦µ³µ¦°°n° Shock ¸ÉÁ· ¹Ê¨³¸É¤¸¨ n°´ªÂ¦nµÇĦ³Á«¦¬·´Ê¥´¤¸ªµ¤¨nµoµ(Non-Contemporaneous Effect) Á¦µ¦oµÂε¨° °ÁªÁ°¦r¸ÊĦ¼ °nµ¸Énµ¤µÄ°¸ °ÁªÁ°¦r´¨nµª¸Ê¨ ¸ÉÅoȺ°Vector Autoregression (VAR) µ¤µ¦Á ¸¥Åo´¸Ê yt = m A1 yt 1 A2 yt 2 ... Ap yt p H t (3.10) Ender (1995) Åo¥´ª°¥nµ¦³°¥nµnµ¥¸É¤¸°´ªÂ¦´¸Ê yt b10 b12 z t J 11 yt 1 J 12 z t 1 H yt zt b20 b21 yt J 21 yt 1 J 22 zt 1 H zt (3.11) (3.12) 56 3.2.4.1 µ¦ª·Á¦µ³®r··¦·¥µ°°n°ªµ¤Â¦¦ª(Impulse Response Function: IRF) ÁºÉ°µµ¦ª·Á¦µ³®rÂε¨°VAR Ťnµ¤µ¦ª·Á¦µ³®rµnµ´¤¦³··Í ¸ÉÅoµµ¦¦³¤µnµ¹o°°µ«´¥ª·¸µ¦°ºÉĵ¦nª¥ª·Á¦µ³®r Impulse Response Function(IRF) Á}°¸®¹Éª·¸µ¦¸É°µ«´¥Âª· Moving Average Á¡ºÉ°¡·µ¦µµ¦Á¨ºÉ°Å®ª °´ªÂ¦¸ÉÁ}°»¦¤Áª¨µÃ¥Âε¨° VAR ³°µ«´¥»¤´· Stability °Âε¨° ĵ¦Á ¸¥Âε¨°Ä®o°¥¼nĦ¼ °Vector Moving Average (VMA) ´¸Ê ª yt º «z » ¬ t¼ ª yt º f «z » ¦ ¬ t¼ i 0 i ªI11 i . I12 i º ªH yt i º » «I i I i » « 22 ¬ 21 ¼ ¬H zti ¼ (3.13) µ´Ê嵦®µ´ª¼ Multiplier ( Iij (i) ) °nµªµ¤·¡¨µ (H i ) ÄÂε¨° VMA ÄÂn¨³nªÁª¨µÂ¨³Îµ´ª¼´Ê¤µ Plot ¦µ¢Á¸¥´Áª¨µ³Åo IRF ®¨´µ¸ÉÅo IRF ³µ¤µ¦ª·Á¦µ³®rªµ¤´¤¡´r °´ªÂ¦®¹Én°°¸´ªÂ¦®¹ÉÄÂn¨³nªÁª¨µ¹ÉÄ µ¦«¹¬µ¸Ê IRF µ¤µ¦°·«µÂªÃo¤µ¦Á¨¸É¥Â¨Â¨³ µ °¨¦³ÄÂn¨³ nªÁª¨µÅoÃ¥´ªÂ¦¸É¤¸¨n° ´¸nµÁ·¸ÉÂo¦· ¸Éε´º°ªµ¤®º ° ´¸nµÁ·¸É Âo¦·(Persistence) ¨³´ªÂ¦°ºÉ 3.2.4.2 µ¦ª·Á¦µ³®rµ¦Â¥nª °ªµ¤Â¦¦ª(Variance Decomposition) µIRF Á}µ¦ª·Á¦µ³®r´ªÂ¦¸É«¹¬µÂÁ}¼nÁºÉ°µ´¤¦³··Í ° Error °´ªÂ¦Á¸¥ª nµªµ¤·¡¨µ (H i ) ¸ÉεªÅoÁ}nµ¸ÉÁ·µ VarianceDecomposition (VD) ¹Á}ª·¸µ¦®¹Éĵ¦ª·Á¦µ³®r£µ¡¦ª¤Ä¦³Ã¥µ Âε¨° VMA ¸ÉÅoµµ¦®µIRF Á¦µµ¤µ¦¡¥µ¦r( Forecast) ´ªÂ¦Åo(®¦º°¡¥µ¦r µVAR ®¦º°VEC ÈÅo) Á¡¦µ³³´Ênª¦³° °ªµ¤Â¦¦ª °ªµ¤¨µÁ¨ºÉ° °µ¦¡¥µ¦r³ °Á¦µÁ¸É¥ª´´nª °µ¦Á¨ºÉ°Å®ªÄ®¹É sequence °´ÁºÉ°¤µµ shocks °´ªÂ¦ ´ÊÁ°Á¤ºÉ°Á¸¥´ shocks °´ÁºÉ°¤µµ´ªÂ¦°ºÉÃ¥µ¦¡·µ¦µ´nª °¨¦³ ° ´ªÂ¦
© Copyright 2025 ExpyDoc