チ査・監ョ、n湿ーオチヲク

£µ‡Ÿœª„
88
£µ‡Ÿœª„„
­°™µ¤„µ¦ª·‹´¥
Á¦ºÉ°Š ‡ªµ¤¡¹Š¡°Ä‹…°Š¨¼„‡oµ­Îµ®¦´‡nµ›¦¦¤Áœ¸¥¤Á…oµ¤Á¸¥ŠÄ®¤nŽ¼°‡ªµÁ¦¸¥¤
‡Îµ¸Ê‹ŠÁ°„­µ¦»—œ¸ÊÁž}œÂ­°™µ¤ž¦³„°¦µ¥Šµœ„µ¦‡oœ‡ªoµÂ°·­¦³˜µ¤®¨´„­¼˜¦
ž¦·µÃš(£µ‡¡·Á«¬) ‡–³Á«¦¬“«µ­˜¦r¤®µª·š¥µ¨´¥Á¸¥ŠÄ®¤n…o°¤¼¨‹µ„­°™µ¤œ¸Ê‹³™¼„
œÎµ¤µÄoĜ„µ¦«¹„¬µª·‹´¥Á·Šª·µ„µ¦Ášnµœ´Êœ‹¹Š…°‡ªµ¤„¦»–µ‹µ„šnµœÃž¦—Ä®o…o°¤¼¨˜µ¤‡ªµ¤Áž}œ
‹¦·ŠÂ¨³®ª´ŠÁž}œ°¥nµŠ¥·ÉŠªnµ‹³Å—o¦´‡ªµ¤„¦»–µÄœ„µ¦˜°Â­°™µ¤‹µ„š»„ÇšnµœŸ¼oª·‹´¥
…°…°¡¦³‡»–š»„šnµœš¸Éŗo„¦»–µÄ®o…o°¤¼¨¤µ–ð„µ­œ¸Ê
ž“¤„µœ˜r¥µ—¸
Ÿ¼oª·‹´¥
___________________________________________________
­nªœš¸É1 …o°¤¼¨š´ÉªÅž
1.
Á¡«( ) µ¥( ) ®·Š
2.
°µ¥»hhhhhže
3.
°µ¸¡( ) œ´„Á¦¸¥œ/ œ´„«¹„¬µ( ) …oµ¦µ„µ¦/¦´“ª·­µ®„·‹
( ) ¨¼„‹oµŠ/ ¡œ´„ŠµœÁ°„œ( ) ›»¦„·‹­nªœ˜´ª/‡oµ…µ¥
( ) ¦´‹oµŠš´ÉªÅž( ) °ºÉœÇhhhhhhh
4.¦µ¥Å—oÁŒ¨¸É¥˜n°Á—º°œhhhhhhhhhhµš
5.­™µœ£µ¡­¤¦­( ) í—( ) ­¤¦­
6.
¦³—´„µ¦«¹„¬µ
( ) ž¦·µ˜¦¸®¦º°­¼Š„ªnµ( ) ˜É優nµž¦·µ˜¦¸
7.
ž{‹‹»´œšnµœ¤¸£¼¤·¨ÎµÁœµ°¥¼nš¸É°ÎµÁ£°..............................‹´Š®ª´—hhhhhhhh
8.
¦³¥³šµŠÃ—¥ž¦³¤µ–‹µ„oµœšnµœ¤µ¥´Š­ªœ­´˜ªrÁ¸¥ŠÄ®¤n hhhhh„·Ã¨Á¤˜¦
9.
šnµœÁ—·œšµŠ¤µ„´Ä‡¦
( ) ¤µ‡œÁ—¸¥ª
( ) ¤µ„´‡¦°‡¦´ª
( ) ¤µ„´Á¡ºÉ°œ( ) ¤µ„´‡–³š´ª¦r/¤µ„´‡–³—¼Šµœ
89
10. šnµœÁ—·œšµŠ‹µ„oµœ¤µ¥´Š‹´Š®ª´—Á¸¥ŠÄ®¤n¨³­ªœ­´˜ªrÁ¸¥ŠÄ®¤n—oª¥¡µ®œ³Ä—
( ) Á—·œÁšoµ
( ) ‹´„¦¥µœ
( ) ‹´„¥µœ¥œ˜r( ) ¦™¥œ˜r­nªœ»‡‡¨
( ) ¦™¦´‹oµŠ/¦™­µ›µ¦–³( ) Á‡¦ºÉ°Š·œ
( ) °ºÉœÇ
11.
‡nµÄo‹nµ¥ÁŒ¨¸É¥Äœ„µ¦Á—·œšµŠ¤µ¤Á¸¥ŠÄ®¤nŽ¼°‡ªµÁ¦¸¥¤…°Ššnµœ
- ‡nµÁ—·œšµŠ
hhhhhhhµš
- ‡nµš¸É¡´„hhhhhhhµš
- ‡nµ°µ®µ¦
hhhhhhhµš
- ‡nµ›¦¦¤Áœ¸¥¤Á…oµ¤­ªœ­´˜ªr¨³°‡ªµÁ¦¸¥¤
hhhhhhhµš
- ‡nµÄo‹nµ¥°ºÉœÇ(Þ¦—¦³»)hhhhhhhhhhhhhhhhµš
­nªœš¸É2 ¦³—´‡ªµ¤¡¹Š¡°Ä‹…°Šœ´„šn°ŠÁš¸É¥ªš¸ÉÁ…oµ¤Á¸¥ŠÄ®¤nŽ¼°‡ªµÁ¦¸¥¤
šnµœ¤¸‡ªµ¤¡¹Š¡°Ä‹˜n°­·ÉŠ˜nµŠÇÁ®¨nµœ¸Ê¤µ„œo°¥Á¡¸¥ŠÄ—
‡ªµ¤¡¹Š¡°Ä‹…°Šœ´„šn°ŠÁš¸É¥ªš¸ÉÁ…oµ¤
Á¸¥ŠÄ®¤nŽ¼°‡ªµÁ¦¸¥¤
—oµœŸ¨·˜£´–”r
‡ªµ¤„ªoµŠ…ªµŠ…°Š°‡ªµÁ¦¸¥¤
¤¸­´˜ªrœÊ宨µ„®¨µ¥ž¦³Á£šš¸É®µ—¼Å—o¥µ„
­™µœš¸É¤¸¦¦¥µ„µ«—¸˜„˜nŠ­ª¥Šµ¤®œoµ˜ºÉœ˜µ˜ºÉœÄ‹
­·ÉŠ°Îµœª¥‡ªµ¤­³—ª„‡¦‡¦´œ
¤¸„µ¦‹´—­—Š„µ¦Ä®o‡ªµ¤¦¼o°ºÉœÇÁnœ¦³œ·Áª«œršµŠœÊε
—oµœ¦µ‡µ
¤¸„µ¦ÂnŠ¦³—´¦µ‡µÁ…oµ¤˜µ¤„¨»n¤œ´„šn°ŠÁš¸É¥ª(Á—È„ ,
Ÿ¼oÄ®n,µª˜nµŠµ˜·)
¦µ‡µÁ…oµ¤Á®¤µ³­¤„´¦·„µ¦š¸ÉšnµœÅ—o¦´
¦µ‡µÁ…oµ¤Á¸¥ŠÄ®¤nŽ¼°‡ªµÁ¦¸¥¤™¼„„ªnµ¡·¡·›£´–”r­´˜ªrœÊε
®nŠ°ºÉœ
¦³—´‡ªµ¤¡¹Š¡°Ä‹
¤µ„ žµœ„¨µŠ œo°¥ Ťn¡°Ä‹
90
‡ªµ¤¡¹Š¡°Ä‹…°Šœ´„šn°ŠÁš¸É¥ªš¸ÉÁ…oµ¤
Á¸¥ŠÄ®¤nŽ¼°‡ªµÁ¦¸¥¤
—oµœn°ŠšµŠ„µ¦‹´—‹Îµ®œnµ¥
„µ¦Á—·œšµŠ­³—ª„­µ¥¤¸žjµ¥Â¨³­´¨´„¬–r°„šµŠ®µ
Šnµ¥
‹Îµœªœn°Š‹Îµ®œnµ¥˜´ÌªÂ¨³‡ªµ¤¦ª—Á¦ÈªÄœ„µ¦‹Îµ®œnµ¥˜´Ìª
¤¸­™µœš¸É‹°—¦™¥œ˜r­³—ª„­µ¥Â¨³Á¡¸¥Š¡°
¤¸¦™­µ›µ¦–³Ä®o¦·„µ¦Äœ„µ¦Á—·œšµŠ
­™µœš¸É°¥¼nĄ¨oš¸É¡´„°µ«´¥®¦º°Ã¦ŠÂ¦¤
—oµœ„µ¦­nŠÁ­¦·¤„µ¦…µ¥
„µ¦Ã‰¬–µž¦³µ­´¤¡´œ›ršµŠ­ºÉ°­·ÉŠ¡·¤¡r
„µ¦Ã‰¬–µž¦³µ­´¤¡´œ›ršµŠª·š¥»
„µ¦Ã‰¬–µž¦³µ­´¤¡´œ›ršµŠÃš¦š´«œr
„µ¦Ã‰¬–µž¦³µ­´¤¡´œ›ršµŠ°·œÁ˜°¦rÁœš
„µ¦Ã‰¬–µž¦³µ­´¤¡´œ›rץŸnœ¡´
„µ¦‹´—„µ¦Â­—Š/„·‹„¦¦¤¡·Á«¬
„µ¦¤¸­nªœ¨—/¦µ‡µ¡·Á«¬
—oµœ»‡¨µ„¦
¤¸¡œ´„Šµœ‹ÎµœªœÁ¡¸¥Š¡°˜n°„µ¦Ä®o¦·„µ¦
¡œ´„Šµœ¤¸‡ªµ¤„¦³˜º°¦º°¦oœÄœ„µ¦Ä®o¦·„µ¦
¡œ´„Šµœ¤¸„µ¦Ä®o¦·„µ¦š¸É¦ª—Á¦Èª
¡œ´„Šµœ¤¸¤œ»¬¥r­´¤¡´œ›r¨³°´›¥µ«´¥—¸
¡œ´„Šµœ­µ¤µ¦™Âœ³œÎµÄ®o‡ªµ¤¦¼oÁ„¸É¥ª„´„µ¦‹´—­—ŠÅ—o
—oµœ„¦³ªœ„µ¦Ä®o¦·„µ¦
¤¸‡ªµ¤¦ª—Á¦ÈªÄœ„µ¦Ä®o¦·„µ¦
¤¸«¼œ¥r¦·„µ¦œ´„šn°ŠÁš¸É¥ª­µ¤µ¦™Ä®o…o°¤¼¨®¦º°nª¥Á®¨º°
Ä®o¦·„µ¦Â„nœ´„šn°ŠÁš¸É¥ªÅ—o
¤¸„µ¦Ä®o…o°¤¼¨…nµª­µ¦‡ÎµÂœ³œÎµš¸É—¸Â„nœ´„šn°ŠÁš¸É¥ª
¤µ„ žµœ„¨µŠ œo°¥
Ťn¡°Ä‹
91
‡ªµ¤¡¹Š¡°Ä‹…°Šœ´„šn°ŠÁš¸É¥ªš¸ÉÁ…oµ¤
Á¸¥ŠÄ®¤nŽ¼°‡ªµÁ¦¸¥¤
¤µ„ žµœ„¨µŠ œo°¥
Ťn¡°Ä‹
—oµœ„µ¦­¦oµŠ®¦º°¨´„¬–³šµŠ„µ¥£µ¡
Á¸¥ŠÄ®¤nŽ¼°‡ªµÁ¦¸¥¤¤¸‡ªµ¤Â˜„˜nµŠ‹µ„°‡ªµÁ¦¸¥¤°ºÉœ
¤¸„µ¦ÂnŠÃŽœ£µ¥Äœ°‡ªµÁ¦¸¥¤Â˜„˜nµŠ‹µ„°‡ªµÁ¦¸¥¤°ºÉœ
¤¸„µ¦‹´—˜ÎµÂ®œnŠš¸É°¥¼n…°Š­´˜ªr˜n¨³ž¦³Á£šÅ—oÁ®¤µ³­¤
š¸É°¥¼n…°Š­´˜ªr¤¸„µ¦°°„®¦º°˜„˜nŠÅ—o­ª¥Šµ¤
¡ºÊœš¸É„µ¦‹´—­—Šœ·š¦¦«„µ¦°ºÉœÇ¤¸„µ¦˜„˜nŠ°¥nµ­ª¥Šµ¤
­nªœš¸É3‡ªµ¤Á˜È¤Ä‹‹nµ¥…°Šœ´„šn°ŠÁš¸É¥ªš¸ÉÁ…oµ¤Á¸¥ŠÄ®¤nŽ¼°‡ªµÁ¦¸¥¤
šnµœ¤¸‡ªµ¤Á®Èœªnµ¦µ‡µ‡nµÁ…oµ¤Á¸¥ŠÄ®¤nŽ¼°‡ªµÁ¦¸¥¤š¸ÉÁ„ȝĜ¦µ‡µŸ¼oÄ®n 290 µšÁ¤ºÉ°
Áš¸¥„´‡»–£µ¡„µ¦Ä®o¦·„µ¦‡ªµ¤­ª¥Šµ¤‡ªµ¤œnµ­œÄ‹…°Š­™µœš¸É¨³‡ªµ¤¦¼o‡ªµ¤´œÁš·Šš¸É
ŗo¦´œ´Êœ‡»o¤‡nµÂ¨³­µ¤µ¦™­¦oµŠ‡ªµ¤¡¹Š¡°Ä‹Ä®o„nšnµœÅ—o®¦º°Å¤n
( ) ‡»o¤‡nµ
®µ„šµŠÁ¸¥ŠÄ®¤nŽ¼°‡ªµÁ¦¸¥¤‹³¤¸„µ¦ž¦´ž¦»Š„µ¦‹´—­—ŠÃ—¥¤¸„µ¦
™oµšnµœÁ®Èœªnµ‡»o¤‡nµ
Á¡·É¤„·‹„¦¦¤˜nµŠÇÁnœ„µ¦Â­—Š¦³ÎµÄ˜oœÊε„µ¦Â­—Š„µ¦Ä®o°µ®µ¦ž¨µ
„µ¦Ä®oœ´„šn°ŠÁš¸É¥ª¦nª¤„·‹„¦¦¤„µ¦—εœÊ執ªœÊ妪¤š´ÊŠ
ž¦´ž¦»Š°‡ªµÁ¦¸¥¤Ä®o¤¸‡ªµ¤­ª¥Šµ¤Â¨³š´œ­¤´¥¥·ÉŠ…¹Êœ
šnµœ¤¸‡ªµ¤Á˜È¤Ä‹š¸É‹³‹nµ¥Äœ¦³—´¦µ‡µhhhhhhµš
( ) Ťn‡»o¤‡nµ
™oµšnµœÁ®ÈœªnµÅ¤n‡»o¤‡nµšnµœ‡·—ªnµ¦³—´¦µ‡µš¸ÉÁ®¤µ³­¤‡ª¦Áž}œ hhhhhhhµš
®¤µ¥Á®˜» : ‹ÎµœªœÁŠ·œš¸Éšnµœ¦³»ÅªošnµœÅ¤n˜o°Š‹nµ¥‹¦·ŠÂ˜nž¦³„µ¦Ä—Á¡¸¥ŠÂ˜nÁž}œ„µ¦­³šo°œ
¤¼¨‡nµšµŠ—oµœ„µ¦Áž}œÂ®¨nŠšn°ŠÁš¸É¥ª…°ŠÁ¸¥ŠÄ®¤nŽ¼°‡ªµÁ¦¸¥¤Ášnµœ´Êœ
«««««««««««««««««««««««««««««««««
92
­nªœš¸É4 ž{‹‹´¥š¸É¤¸°·š›·¡¨˜n°‡ªµ¤¡¹Š¡°Ä‹Äœ„µ¦Áš¸É¥ª¤Á¸¥ŠÄ®¤nŽ¼°‡ªµÁ¦¸¥¤
1.ž{‹‹´¥š¸É¤¸­nªœ—¹Š—¼—Ä®ošnµœ˜´—­·œÄ‹¤µÁš¸É¥ª¤Á¸¥ŠÄ®¤nŽ¼°‡ªµÁ¦¸¥¤¤µ„š¸É­»—Á¦¸¥Š°´œ—´‹µ„
¤µ„Åžœo°¥(˜°Á¡¸¥Š3 °´œ—´ ×¥°´œ—´1 ‡º°¤µ„š¸É­»—)
°´œ—´
ž{‹‹´¥š¸É¤¸°·š›·¡¨˜n°‡ªµ¤¡¹Š¡°Ä‹Äœ„µ¦Áš¸É¥ª¤Á¸¥ŠÄ®¤nŽ¼°‡ªµÁ¦¸¥¤
ž{‹‹´¥—oµœŸ¨·˜£´–”rÁnœ ¤¸­´˜ªrœÊε®µ¥µ„®¨µ„®¨µ¥ž¦³Á£š¦¦¥µ„µ«—¸­ª¥Šµ¤
®œoµ˜ºÉœ˜µ˜ºÉœÄ‹
ž{‹‹´¥—oµœ¦µ‡µÁnœ¦µ‡µÁ…oµ¤¤¸‡ªµ¤Á®¤µ³­¤¤¸žjµ¥Â­—Š¦µ‡µÁ…oµ¤´—Á‹œ
ž{‹‹´¥—oµœn°ŠšµŠ„µ¦‹´—‹Îµ®œnµ¥ÁnœÁ—·œšµŠ¤µ­³—ª„°¥¼nĄ¨o˜´ªÁ¤º°Š
ž{‹‹´¥—oµœ„µ¦­nŠÁ­¦·¤„µ¦…µ¥¤¸„µ¦Ã‰¬–µŸnµœ­ºÉ°˜nµŠÇ„µ¦¤¸­nªœ¨—/¦µ‡µ¡·Á«¬
ž{‹‹´¥—oµœ»‡¨µ„¦Ánœ¡œ´„Šµœ¤¸Á¡¸¥Š¡°Äœ„µ¦Ä®o¦·„µ¦°´›¥µ«´¥—¸­µ¤µ¦™Ä®o
‡ªµ¤¦¼o¨³‡ªµ¤nª¥Á®¨º°Â„n¨¼„‡oµÅ—o
ž{‹‹´¥—oµœ„¦³ªœ„µ¦Ä®o¦·„µ¦Ánœ¤¸„µ¦Ä®o¦·„µ¦š¸É¦ª—Á¦Èª
ž{‹‹´¥—oµœ„µ¦­¦oµŠ®¦º°¨´„¬–³šµŠ„µ¥£µ¡Ánœ¤¸„µ¦°°„˜„˜nŠ‹´—Â¥„ÃŽœ
„µ¦Â­—ŠÅ—o°¥nµŠÁ®¤µ³­¤
­Îµ®¦´„µ¦˜°‡Îµ™µ¤…o°š¸É2-8 Ĝ˜n¨³ž{‹‹´¥œ´Êœšnµœ‡·—ªnµ¤¸Ÿ¨˜n°‡ªµ¤¡¹Š¡°Ä‹Äœ„µ¦Áš¸É¥ª¤
Á¸¥ŠÄ®¤nŽ¼°‡ªµÁ¦¸¥¤¤µ„œo°¥Á¡¸¥ŠÄ—Ä®ošnµœÁ¦¸¥Š¨Îµ—´‡ªµ¤­Îµ‡´‹µ„¤µ„Åž®µœo°¥(°´œ—´1
‡º°¤µ„š¸É­»—)
2. ž{‹‹´¥—oµœŸ¨·˜£´–”rėš¸É¤¸Ÿ¨˜n°‡ªµ¤¡¹Š¡°Ä‹…°ŠšnµœÄœ„µ¦¤µÁš¸É¥ª¤Á¸¥ŠÄ®¤nŽ¼°‡ªµÁ¦¸¥¤
( ) °‡ªµÁ¦¸¥¤¤¸…œµ—„ªoµŠ…ªµŠÂ¨³Ä®nš¸É­»—Äœ£¼¤·£µ‡Á°Á¸¥˜³ª´œ°°„ÁŒ¸¥ŠÄ˜o
( ) ¤¸­´˜ªrœÊ宨µ„®¨µ¥ž¦³Á£šš¸ÉœÎµÁ…oµ‹µ„˜nµŠž¦³Áš«Â¨³®µ—¼Å—o¥µ„
( ) ¤¸„µ¦‹´—­—Š„µ¦Ä®o‡ªµ¤¦¼o°ºÉœÇÁnœÁ¦º°Ã¦µ–¦³œ·Áª«œršµŠœÊ妳œ·Áª«œrµ¥ {~Š
Áž}œ˜oœ
( ) ­™µœš¸É¤¸¦¦¥µ„µ«—¸˜„˜nŠ­ª¥Šµ¤®œoµ˜ºÉœ˜µ˜ºÉœÄ‹„ªnµš¸É°ºÉœ
( ) ¤¸­·ÉŠ°Îµœª¥‡ªµ¤­³—ª„‡¦‡¦´œÁnœ®o°ŠœÊε¦oµœ°µ®µ¦°»ž„¦–rnª¥Á®¨º°Ÿ¼o¡·„µ¦Â¨³¦oµœ
…µ¥…°Šš¸É¦³¨¹„
93
3. ž{‹‹´¥—oµœ¦µ‡µÄ—š¸É¤¸Ÿ¨˜n°‡ªµ¤¡¹Š¡°Ä‹…°ŠšnµœÄœ„µ¦¤µÁš¸É¥ª¤Á¸¥ŠÄ®¤nŽ¼°‡ªµÁ¦¸¥¤
( ) ¤¸„µ¦ÂnŠ¦³—´¦µ‡µÁ…oµ¤˜µ¤„¨»n¤œ´„šn°ŠÁš¸É¥ª(Á—È„˜É優nµ135Ž¤,Á—È„, Ÿ¼oÄ®n,µª˜nµŠµ˜·)
( ) ¦µ‡µ‡nµÁ…oµ¤Á®¤µ³­¤„´¦·„µ¦š¸ÉšnµœÅ—o¦´
( ) ¦µ‡µÁ…oµ¤Á¸¥ŠÄ®¤nŽ¼°‡ªµÁ¦¸¥¤™¼„„ªnµ¡·¡·›£´–”r­´˜ªrœÊε®nŠ°ºÉœ
4. ž{‹‹´¥—oµœn°ŠšµŠ„µ¦‹´—‹Îµ®œnµ¥Ä—š¸É¤¸Ÿ¨˜n°‡ªµ¤¡¹Š¡°Ä‹…°ŠšnµœÄœ„µ¦¤µÁš¸É¥ª¤Á¸¥ŠÄ®¤n
Ž¼°‡ªµÁ¦¸¥¤
( ) „µ¦Á—·œšµŠ­³—ª„­µ¥¤¸žjµ¥Â¨³­´¨´„¬–r°„šµŠ®µŠnµ¥
( ) ‹Îµœªœn°Š‹Îµ®œnµ¥˜´Ìª¤¸Á¡¸¥Š¡°Â¨³‹Îµ®œnµ¥˜´Ìª¦ª—Á¦Èª
( ) ¤¸­™µœš¸É‹°—¦™¥œ˜r­³—ª„­µ¥Â¨³Á¡¸¥Š¡°
( ) ¤¸¦™­µ›µ¦–³Ä®o¦·„µ¦Äœ„µ¦Á—·œšµŠ£µ¥Äœ¦·Áª–­ªœ­´˜ªrÁ¸¥ŠÄ®¤n
( ) ­™µœš¸É°¥¼nĄ¨oš¸É¡´„°µ«´¥®¦º°Ã¦ŠÂ¦¤
5. ž{‹‹´¥—oµœ„µ¦­nŠÁ­¦·¤„µ¦…µ¥Ä—š¸É¤¸Ÿ¨˜n°‡ªµ¤¡¹Š¡°Ä‹…°ŠšnµœÄœ„µ¦¤µÁš¸É¥ª¤Á¸¥ŠÄ®¤n
Ž¼°‡ªµÁ¦¸¥¤
( ) „µ¦Ã‰¬–µž¦³µ­´¤¡´œ›ršµŠ­ºÉ°­·ÉŠ¡·¤¡r
( ) „µ¦Ã‰¬–µž¦³µ­´¤¡´œ›ršµŠª·š¥»
( ) „µ¦Ã‰¬–µž¦³µ­´¤¡´œ›ršµŠÃš¦š´«œr
( ) „µ¦Ã‰¬–µž¦³µ­´¤¡´œ›ršµŠ°·œÁ˜°¦rÁœš
( ) „µ¦Ã‰¬–µž¦³µ­´¤¡´œ›rץŸnœ¡´
( ) „µ¦‹´—„µ¦Â­—Š/„·‹„¦¦¤¡·Á«¬
( ) ¤¸­nªœ¨—®¦º°¦µ‡µ¡·Á«¬
6. ž{‹‹´¥—oµœ»‡¨µ„¦Ä—š¸É¤¸Ÿ¨˜n°‡ªµ¤¡¹Š¡°Ä‹…°ŠšnµœÄœ„µ¦¤µÁš¸É¥ª¤Á¸¥ŠÄ®¤nŽ¼°‡ªµÁ¦¸¥¤
( ) ¡œ´„Šµœ¤¸‹ÎµœªœÁ¡¸¥Š¡°˜n°„µ¦Ä®o¦·„µ¦
( ) ¡œ´„Šµœ¤¸‡ªµ¤„¦³˜º°¦º°¦oœÄœ„µ¦Ä®o¦·„µ¦
( ) ¡œ´„Šµœ¤¸„µ¦Ä®o¦·„µ¦š¸É¦ª—Á¦Èª
( ) ¡œ´„Šµœ¤¸¤œ»¬¥r­´¤¡´œ›r¨³°´›¥µ«´¥—¸
( ) ¡œ´„Šµœ­µ¤µ¦™Âœ³œÎµÄ®o‡ªµ¤¦¼oÁ„¸É¥ª„´„µ¦‹´—­—ŠÅ—o
94
7. ž{‹‹´¥—oµœ„¦³ªœ„µ¦Ä®o¦·„µ¦Ä—š¸É¤¸Ÿ¨˜n°‡ªµ¤¡¹Š¡°Ä‹…°ŠšnµœÄœ„µ¦¤µÁš¸É¥ª¤Á¸¥ŠÄ®¤n
Ž¼°‡ªµÁ¦¸¥¤
( ) ¤¸‡ªµ¤¦ª—Á¦ÈªÄœ„µ¦Ä®o¦·„µ¦
( ) ¤¸«¼œ¥r¦·„µ¦œ´„šn°ŠÁš¸É¥ª­µ¤µ¦™Ä®o…o°¤¼¨®¦º°nª¥Á®¨º°Ä®o¦·„µ¦Â„nœ´„šn°ŠÁš¸É¥ªÅ—o
( ) ¤¸„µ¦Ä®o…o°¤¼¨…nµª­µ¦‡ÎµÂœ³œÎµš¸É—¸Â„nœ´„šn°ŠÁš¸É¥ª
8. ž{‹‹´¥—oµœ„µ¦­¦oµŠ®¦º°¨´„¬–³šµŠ„µ¥£µ¡Ä—š¸É¤¸Ÿ¨˜n°‡ªµ¤¡¹Š¡°Ä‹…°ŠšnµœÄœ„µ¦¤µÁš¸É¥ª
¤Á¸¥ŠÄ®¤nŽ¼°‡ªµÁ¦¸¥¤
( ) Á¸¥ŠÄ®¤nŽ¼°‡ªµÁ¦¸¥¤¤¸‡ªµ¤Â˜„˜nµŠ‹µ„°‡ªµÁ¦¸¥¤°ºÉœ
( ) ¤¸„µ¦ÂnŠÃŽœ£µ¥Äœ°‡ªµÁ¦¸¥¤Â˜„˜nµŠ‹µ„°‡ªµÁ¦¸¥¤°ºÉœ
( ) ¤¸„µ¦‹´—˜ÎµÂ®œnŠš¸É°¥¼n…°Š­´˜ªr˜n¨³ž¦³Á£šÅ—oÁ®¤µ³­¤
( ) š¸É°¥¼n…°Š­´˜ªr¤¸„µ¦°°„®¦º°˜„˜nŠÅ—o­ª¥Šµ¤
( ) ¡ºÊœš¸É„µ¦‹´—­—Šœ·š¦¦«„µ¦°ºÉœÇ¤¸„µ¦˜„˜nŠ°¥nµŠ­ª¥Šµ¤
## …°…°‡»–š»„šnµœš¸É„¦»–µÄ®o‡ªµ¤¦nª¤¤º°Äœ„µ¦˜°Â­°™µ¤##
95
£µ‡Ÿœª„…
„µ¦ª·Á‡¦µ³®rž{‹‹´¥—oµœ…o°¤¼¨š´ÉªÅž…°Š„¨»n¤¨¼„‡oµ˜´ª°¥nµŠš¸É¤¸°·š›·¡¨˜n°‡ªµ¤¡¹Š¡°Ä‹Äœ
„µ¦‹nµ¥‡nµ›¦¦¤Áœ¸¥¤Á…oµ¤Á¸¥ŠÄ®¤nŽ¼°‡ªµÁ¦¸¥¤Å—očo‹Îµ¨°ŠÃ¨‹·š(Logit Model) —´Šœ¸Ê
--> READ;FILE="C:\Documents and Settings\ACER\Desktop\MY IS\300
samples.xls"$
--> SAMPLE;1-300$
-->
LOGIT;Lhs=WORTH;Rhs=ONE,GENDER,AGE,CAREER,INCOME,MARRIED,EDUCATIO,HOO
D
,DISTANCE,BUDDY2,BUDDY3,CAR,EXPEND,MOCYC;Margin$
Normal exit from iterations. Exit status=0.
+---------------------------------------------+
| Multinomial Logit Model
|
| Maximum Likelihood Estimates
|
| Model estimated: Jul 26, 2009 at 05:27:16PM.|
| Dependent variable
WORTH
|
| Weighting variable
None
|
| Number of observations
300
|
| Iterations completed
8
|
| Log likelihood function
-123.7241
|
| Restricted log likelihood
-204.4035
|
| Chi squared
161.3589
|
| Degrees of freedom
13
|
| Prob[ChiSqd > value] =
.0000000
|
| Hosmer-Lemeshow chi-squared =
8.75703
|
| P-value= .27057 with deg.fr. =
7
|
+---------------------------------------------+
96
+---------+--------------+----------------+--------+---------+---------+
|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] | Mean
of X|
+---------+--------------+----------------+--------+---------+-------Characteristics in numerator of Prob[Y = 1]
Constant
-6.63811501
2.07801801
-3.194
.0014
GENDER
.39272677
.34505710
1.138
.2551
.59000000
AGE
-.12208278
.03570948
-3.419
.0006
38.5200000
CAREER
-.17641573
.37062661
-.476
.6341
.66666667
INCOME
.00048810
.759615D-04
6.426
.0000
19634.6767
MARRIED
-.57326726
.53408482
-1.073
.2831
.60000000
EDUCATIO
.15079979
.39995028
.377
.7061
.69000000
HOOD
-.60490545
.61282205
-.987
.3236
.86000000
DISTANCE
-.00982254
.00630045
-1.559
.1190
27.5233333
BUDDY2
3.55144031
1.39381816
2.548
.0108
.63666667
BUDDY3
2.16010796
1.36686756
1.580
.1140
.32333333
CAR
-2.01344964
1.31438642
-1.532
.1256
.79333333
EXPEND
.00540314
.00291384
1.854
.0637
482.310000
MOCYC
-1.37682885
1.36053190
-1.012
.3115
.16333333
97
+-------------------------------------------+
| Partial derivatives of probabilities with |
| respect to the vector of characteristics. |
| They are computed at the means of the Xs. |
| Observations used are All Obs.
|
+-------------------------------------------+
+---------+--------------+----------------+--------+---------+---------+
|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z]
|Elasticity|
+---------+--------------+----------------+--------+---------+------Characteristics in numerator of Prob[Y = 1]
Constant
-1.26248676
.38989442
-3.238
.0012
Marginal effect for dummy variable is P|1 - P|0.
GENDER
.07589734
.06784672
1.119
.2633
.06014167
AGE
-.02321862
.00659119
-3.523
.0004
1.20121191
Marginal effect for dummy variable is P|1 - P|0.
CAREER
-.03306223
.06810700
-.485
.6274
.02960314
INCOME
.928304D-04
.117004D-04
7.934
.0000
2.44799630
Marginal effect for dummy variable is P|1 - P|0.
MARRIED
-.10578736
.09460200
-1.118
.2635
.08524755
Marginal effect for dummy variable is P|1 - P|0.
EDUCATIO
.02907612
.07856997
.370
.7113
.02694526
Marginal effect for dummy variable is P|1 - P|0.
HOOD
-.10249502
.09154475
-1.120
.2629
.11838538
DISTANCE
-.00186812
.00120683
-1.548
.1216
.06905635
Marginal effect for dummy variable is P|1 - P|0.
BUDDY2
.68070505
.19762580
3.444
.0006
.58206028
Marginal effect for dummy variable is P|1 - P|0.
BUDDY3
.33452380
.17152540
1.950
.0511
.14526948
Marginal effect for dummy variable is P|1 - P|0.
CAR
-.27721249
.12737284
-2.176
.0295
.29536932
EXPEND
.00102761
.00055097
1.865
.0622
.66565860
Marginal effect for dummy variable is P|1 - P|0.
MOCYC
-.30546081
.32165814
-.950
.3423
.06700809
98
+---------------------+
| Marginal Effects for|
+----------+----------+
| Variable | All Obs. |
+----------+----------+
| ONE
| -1.26249 |
| GENDER
|
.07590 |
| AGE
| -.02322 |
| CAREER
| -.03306 |
| INCOME
|
.00009 |
| MARRIED | -.10579 |
| EDUCATIO |
.02908 |
| HOOD
| -.10250 |
| DISTANCE | -.00187 |
| BUDDY2
|
.68071 |
| BUDDY3
|
.33452 |
| CAR
| -.27721 |
| EXPEND
|
.00103 |
| MOCYC
| -.30546 |
+----------+----------+
+----------------------------------------+
| Fit Measures for Binomial Choice Model |
| Logit
model for variable WORTH
|
+----------------------------------------+
| Proportions P0= .423333
P1= .576667 |
| N =
300 N0=
127
N1=
173 |
| LogL = -123.72411 LogL0 = -204.4035 |
| Estrella = 1-(L/L0)^(-2L0/n) = .49547 |
+----------------------------------------+
|
Efron | McFadden | Ben./Lerman |
|
.44355 |
.39471 |
.72933 |
|
Cramer | Veall/Zim. |
Rsqrd_ML |
|
.44562 |
.60641 |
.41600 |
+----------------------------------------+
| Information Akaike I.C. Schwarz I.C. |
| Criteria
.91816
327.30117 |
+----------------------------------------+
99
ž¦³ª´˜·Ÿ¼oÁ…¸¥œ
ºÉ°œµ¥ž“¤„µœ˜r¥µ—¸
ª´œÁ—º°œžeÁ„·—ª´œš¸É
29Á—º°œ¡§«‹·„µ¥œ¡.«. 2527
ž¦³ª´˜·„µ¦«¹„¬µ­ÎµÁ¦È‹„µ¦«¹„¬µ¦³—´¤´›¥¤«¹„¬µ˜°œž¨µ¥Ã¦ŠÁ¦¸¥œ»ªµš¥rª·š¥µ¨´¥
‹´Š®ª´—¨ÎµžµŠže„µ¦«¹„¬µ2545
­ÎµÁ¦È‹„µ¦«¹„¬µ¦³—´ž¦·µ˜¦¸Á«¦¬“«µ­˜¦´–”·˜
¤®µª·š¥µ¨´¥Á¸¥ŠÄ®¤n že„µ¦«¹„¬µ2550