£µª 88 £µª °µ¤µ¦ª·´¥ Á¦ºÉ° ªµ¤¡¹¡°Ä °¨¼oµÎµ®¦´nµ¦¦¤Á¸¥¤Á oµ¤Á¸¥Ä®¤n¼°ªµÁ¦¸¥¤ ε¸ÊÂÁ°µ¦»¸ÊÁ}°µ¤¦³°¦µ¥µµ¦oªoµÂ°·¦³µ¤®¨´¼¦ ¦·µÃ(£µ¡·Á«¬) ³Á«¦¬«µ¦r¤®µª·¥µ¨´¥Á¸¥Ä®¤n o°¤¼¨µÂ°µ¤¸Ê³¼ 夵Äoĵ¦«¹¬µª·´¥Á·ª·µµ¦Ánµ´Ê¹ °ªµ¤¦»µµnµÃ¦Ä®o o°¤¼¨µ¤ªµ¤Á} ¦·Â¨³®ª´Á}°¥nµ¥·Éªnµ³Åo¦´ªµ¤¦»µÄµ¦°Â°µ¤µ»Çnµ¼oª·´¥ ° °¡¦³»»nµ¸ÉÅo¦»µÄ®o o°¤¼¨¤µÃ°µ¸Ê ¤µr¥µ¸ ¼oª·´¥ ___________________________________________________ nª¸É1 o°¤¼¨´ÉªÅ 1. Á¡«( ) µ¥( ) ®· 2. °µ¥»hhhhhe 3. °µ¸¡( ) ´Á¦¸¥/ ´«¹¬µ( ) oµ¦µµ¦/¦´ª·µ®· ( ) ¨¼oµ/ ¡´µÁ°( ) »¦·nª´ª/oµ µ¥ ( ) ¦´oµ´ÉªÅ( ) °ºÉÇhhhhhhh 4.¦µ¥ÅoÁ¨¸É¥n°Áº°hhhhhhhhhhµ 5.µ£µ¡¤¦( ) Ã( ) ¤¦ 6. ¦³´µ¦«¹¬µ ( ) ¦·µ¦¸®¦º°¼ªnµ( ) Éεªnµ¦·µ¦¸ 7. {»´nµ¤¸£¼¤·¨ÎµÁµ°¥¼n¸É°ÎµÁ£°..............................´®ª´hhhhhhhh 8. ¦³¥³µÃ¥¦³¤µµoµnµ¤µ¥´ª´ªrÁ¸¥Ä®¤n hhhhh·Ã¨Á¤¦ 9. nµÁ·µ¤µ´Ä¦ ( ) ¤µÁ¸¥ª ( ) ¤µ´¦°¦´ª ( ) ¤µ´Á¡ºÉ°( ) ¤µ´³´ª¦r/¤µ´³¼µ 89 10. nµÁ·µµoµ¤µ¥´´®ª´Á¸¥Ä®¤n¨³ª´ªrÁ¸¥Ä®¤noª¥¡µ®³Ä ( ) Á·Áoµ ( ) ´¦¥µ ( ) ´¥µ¥r( ) ¦¥rnª»¨ ( ) ¦¦´oµ/¦µµ¦³( ) Á¦ºÉ°· ( ) °ºÉÇ 11. nµÄonµ¥Á¨¸É¥Äµ¦Á·µ¤µ¤Á¸¥Ä®¤n¼°ªµÁ¦¸¥¤ °nµ - nµÁ·µ hhhhhhhµ - nµ¸É¡´hhhhhhhµ - nµ°µ®µ¦ hhhhhhhµ - nµ¦¦¤Á¸¥¤Á oµ¤ª´ªr¨³°ªµÁ¦¸¥¤ hhhhhhhµ - nµÄonµ¥°ºÉÇ(榳»)hhhhhhhhhhhhhhhhµ nª¸É2 ¦³´ªµ¤¡¹¡°Ä °´n°Á¸É¥ª¸ÉÁ oµ¤Á¸¥Ä®¤n¼°ªµÁ¦¸¥¤ nµ¤¸ªµ¤¡¹¡°Än°·ÉnµÇÁ®¨nµ¸Ê¤µo°¥Á¡¸¥Ä ªµ¤¡¹¡°Ä °´n°Á¸É¥ª¸ÉÁ oµ¤ Á¸¥Ä®¤n¼°ªµÁ¦¸¥¤ oµ¨·£´r ªµ¤ªoµ ªµ °°ªµÁ¦¸¥¤ ¤¸´ªrÊ宨µ®¨µ¥¦³Á£¸É®µ¼Åo¥µ µ¸É¤¸¦¦¥µµ«¸Ânª¥µ¤®oµºÉµºÉÄ ·É°Îµª¥ªµ¤³ª¦¦´ ¤¸µ¦´Âµ¦Ä®oªµ¤¦¼o°ºÉÇÁn¦³·Áª«rµÊε oµ¦µµ ¤¸µ¦Ân¦³´¦µµÁ oµ¤µ¤¨»n¤´n°Á¸É¥ª(ÁÈ , ¼oÄ®n,µªnµµ·) ¦µµÁ oµ¤Á®¤µ³¤´¦·µ¦¸ÉnµÅo¦´ ¦µµÁ oµ¤Á¸¥Ä®¤n¼°ªµÁ¦¸¥¤¼ªnµ¡·¡·£´r´ªrÊε ®n°ºÉ ¦³´ªµ¤¡¹¡°Ä ¤µ µ¨µ o°¥ Ťn¡°Ä 90 ªµ¤¡¹¡°Ä °´n°Á¸É¥ª¸ÉÁ oµ¤ Á¸¥Ä®¤n¼°ªµÁ¦¸¥¤ oµn°µµ¦´Îµ®nµ¥ µ¦Á·µ³ªµ¥¤¸jµ¥Â¨³´¨´¬r°µ®µ nµ¥ εªn°Îµ®nµ¥´ÌªÂ¨³ªµ¤¦ªÁ¦ÈªÄµ¦Îµ®nµ¥´Ìª ¤¸µ¸É°¦¥r³ªµ¥Â¨³Á¡¸¥¡° ¤¸¦µµ¦³Ä®o¦·µ¦Äµ¦Á·µ µ¸É°¥¼nĨo¸É¡´°µ«´¥®¦º°Ã¦Â¦¤ oµµ¦nÁ¦·¤µ¦ µ¥ µ¦Ã¬µ¦³µ´¤¡´rµºÉ°·É¡·¤¡r µ¦Ã¬µ¦³µ´¤¡´rµª·¥» µ¦Ã¬µ¦³µ´¤¡´rµÃ¦´«r µ¦Ã¬µ¦³µ´¤¡´rµ°·Á°¦rÁ µ¦Ã¬µ¦³µ´¤¡´rÃ¥Ân¡´ µ¦´µ¦Â/·¦¦¤¡·Á«¬ µ¦¤¸nª¨/¦µµ¡·Á«¬ oµ»¨µ¦ ¤¸¡´µÎµªÁ¡¸¥¡°n°µ¦Ä®o¦·µ¦ ¡´µ¤¸ªµ¤¦³º°¦º°¦oĵ¦Ä®o¦·µ¦ ¡´µ¤¸µ¦Ä®o¦·µ¦¸É¦ªÁ¦Èª ¡´µ¤¸¤»¬¥r´¤¡´r¨³°´¥µ«´¥¸ ¡´µµ¤µ¦Â³ÎµÄ®oªµ¤¦¼oÁ¸É¥ª´µ¦´ÂÅo oµ¦³ªµ¦Ä®o¦·µ¦ ¤¸ªµ¤¦ªÁ¦ÈªÄµ¦Ä®o¦·µ¦ ¤¸«¼¥r¦·µ¦´n°Á¸É¥ªµ¤µ¦Ä®o o°¤¼¨®¦º°nª¥Á®¨º° Ä®o¦·µ¦Ân´n°Á¸É¥ªÅo ¤¸µ¦Ä®o o°¤¼¨ nµªµ¦ÎµÂ³Îµ¸É¸Ân´n°Á¸É¥ª ¤µ µ¨µ o°¥ Ťn¡°Ä 91 ªµ¤¡¹¡°Ä °´n°Á¸É¥ª¸ÉÁ oµ¤ Á¸¥Ä®¤n¼°ªµÁ¦¸¥¤ ¤µ µ¨µ o°¥ Ťn¡°Ä oµµ¦¦oµ®¦º°¨´¬³µµ¥£µ¡ Á¸¥Ä®¤n¼°ªµÁ¦¸¥¤¤¸ªµ¤Ânµµ°ªµÁ¦¸¥¤°ºÉ ¤¸µ¦Ân㵥ݪµÁ¦¸¥¤Ânµµ°ªµÁ¦¸¥¤°ºÉ ¤¸µ¦´ÎµÂ®n¸É°¥¼n °´ªrÂn¨³¦³Á£ÅoÁ®¤µ³¤ ¸É°¥¼n °´ªr¤¸µ¦°°Â®¦º°ÂnÅoª¥µ¤ ¡ºÊ¸Éµ¦´Â·¦¦«µ¦°ºÉǤ¸µ¦Ân°¥nµª¥µ¤ nª¸É3ªµ¤ÁȤÄnµ¥ °´n°Á¸É¥ª¸ÉÁ oµ¤Á¸¥Ä®¤n¼°ªµÁ¦¸¥¤ nµ¤¸ªµ¤Á®Èªnµ¦µµnµÁ oµ¤Á¸¥Ä®¤n¼°ªµÁ¦¸¥¤¸ÉÁÈĦµµ¼oÄ®n 290 µÁ¤ºÉ° Á¸¥´»£µ¡µ¦Ä®o¦·µ¦ªµ¤ª¥µ¤ªµ¤nµÄ °µ¸É¨³ªµ¤¦¼oªµ¤´Á·¸É Åo¦´´Ê»o¤nµÂ¨³µ¤µ¦¦oµªµ¤¡¹¡°ÄÄ®oÂnnµÅo®¦º°Å¤n ( ) »o¤nµ ®µµÁ¸¥Ä®¤n¼°ªµÁ¦¸¥¤³¤¸µ¦¦´¦»µ¦´ÂÃ¥¤¸µ¦ oµnµÁ®Èªnµ»o¤nµ Á¡·É¤·¦¦¤nµÇÁnµ¦Â¦³ÎµÄoÊεµ¦Âµ¦Ä®o°µ®µ¦¨µ µ¦Ä®o´n°Á¸É¥ª¦nª¤·¦¦¤µ¦ÎµÊε·ªÊ妪¤´Ê ¦´¦»°ªµÁ¦¸¥¤Ä®o¤¸ªµ¤ª¥µ¤Â¨³´¤´¥¥·É ¹Ê nµ¤¸ªµ¤ÁȤĸɳnµ¥Ä¦³´¦µµhhhhhhµ ( ) Ťn»o¤nµ oµnµÁ®ÈªnµÅ¤n»o¤nµnµ·ªnµ¦³´¦µµ¸ÉÁ®¤µ³¤ª¦Á} hhhhhhhµ ®¤µ¥Á®» : εªÁ·¸Énµ¦³»ÅªonµÅ¤no°nµ¥¦·Ân¦³µ¦ÄÁ¡¸¥ÂnÁ}µ¦³o° ¤¼¨nµµoµµ¦Á}®¨nn°Á¸É¥ª °Á¸¥Ä®¤n¼°ªµÁ¦¸¥¤Ánµ´Ê ««««««««««««««««««««««««««««««««« 92 nª¸É4 {´¥¸É¤¸°··¡¨n°ªµ¤¡¹¡°Äĵ¦Á¸É¥ª¤Á¸¥Ä®¤n¼°ªµÁ¦¸¥¤ 1.{´¥¸É¤¸nª¹¼Ä®onµ´·Ä¤µÁ¸É¥ª¤Á¸¥Ä®¤n¼°ªµÁ¦¸¥¤¤µ¸É»Á¦¸¥°´´µ ¤µÅo°¥(°Á¡¸¥3 °´´ Ã¥°´´1 º°¤µ¸É») °´´ {´¥¸É¤¸°··¡¨n°ªµ¤¡¹¡°Äĵ¦Á¸É¥ª¤Á¸¥Ä®¤n¼°ªµÁ¦¸¥¤ {´¥oµ¨·£´rÁn ¤¸´ªrÊε®µ¥µ®¨µ®¨µ¥¦³Á£¦¦¥µµ«¸ª¥µ¤ ®oµºÉµºÉÄ {´¥oµ¦µµÁn¦µµÁ oµ¤¤¸ªµ¤Á®¤µ³¤¤¸jµ¥Â¦µµÁ oµ¤´Á {´¥oµn°µµ¦´Îµ®nµ¥ÁnÁ·µ¤µ³ª°¥¼nĨo´ªÁ¤º° {´¥oµµ¦nÁ¦·¤µ¦ µ¥¤¸µ¦Ã¬µnµºÉ°nµÇµ¦¤¸nª¨/¦µµ¡·Á«¬ {´¥oµ»¨µ¦Án¡´µ¤¸Á¡¸¥¡°Äµ¦Ä®o¦·µ¦°´¥µ«´¥¸µ¤µ¦Ä®o ªµ¤¦¼o¨³ªµ¤nª¥Á®¨º°Ân¨¼oµÅo {´¥oµ¦³ªµ¦Ä®o¦·µ¦Án¤¸µ¦Ä®o¦·µ¦¸É¦ªÁ¦Èª {´¥oµµ¦¦oµ®¦º°¨´¬³µµ¥£µ¡Án¤¸µ¦°°ÂÂn´Â¥Ã µ¦ÂÅo°¥nµÁ®¤µ³¤ 宦´µ¦°Îµµ¤ o°¸É2-8 ÄÂn¨³{´¥´Ênµ·ªnµ¤¸¨n°ªµ¤¡¹¡°Äĵ¦Á¸É¥ª¤ Á¸¥Ä®¤n¼°ªµÁ¦¸¥¤¤µo°¥Á¡¸¥ÄÄ®onµÁ¦¸¥¨Îµ´ªµ¤Îµ´µ¤µÅ®µo°¥(°´´1 º°¤µ¸É») 2. {´¥oµ¨·£´rĸɤ¸¨n°ªµ¤¡¹¡°Ä °nµÄµ¦¤µÁ¸É¥ª¤Á¸¥Ä®¤n¼°ªµÁ¦¸¥¤ ( ) °ªµÁ¦¸¥¤¤¸ µªoµ ªµÂ¨³Ä®n¸É»Ä£¼¤·£µÁ°Á¸¥³ª´°°Á¸¥Äo ( ) ¤¸´ªrÊ宨µ®¨µ¥¦³Á£¸ÉεÁ oµµnµ¦³Á«Â¨³®µ¼Åo¥µ ( ) ¤¸µ¦´Âµ¦Ä®oªµ¤¦¼o°ºÉÇÁnÁ¦º°Ã¦µ¦³·Áª«rµÊ妳·Áª«rµ¥ {~ Á}o ( ) µ¸É¤¸¦¦¥µµ«¸Ânª¥µ¤®oµºÉµºÉĪnµ¸É°ºÉ ( ) ¤¸·É°Îµª¥ªµ¤³ª¦¦´Án®o°Êε¦oµ°µ®µ¦°»¦rnª¥Á®¨º°¼o¡·µ¦Â¨³¦oµ µ¥ °¸É¦³¨¹ 93 3. {´¥oµ¦µµÄ¸É¤¸¨n°ªµ¤¡¹¡°Ä °nµÄµ¦¤µÁ¸É¥ª¤Á¸¥Ä®¤n¼°ªµÁ¦¸¥¤ ( ) ¤¸µ¦Ân¦³´¦µµÁ oµ¤µ¤¨»n¤´n°Á¸É¥ª(ÁÈÉεªnµ135¤,ÁÈ, ¼oÄ®n,µªnµµ·) ( ) ¦µµnµÁ oµ¤Á®¤µ³¤´¦·µ¦¸ÉnµÅo¦´ ( ) ¦µµÁ oµ¤Á¸¥Ä®¤n¼°ªµÁ¦¸¥¤¼ªnµ¡·¡·£´r´ªrÊε®n°ºÉ 4. {´¥oµn°µµ¦´Îµ®nµ¥Ä¸É¤¸¨n°ªµ¤¡¹¡°Ä °nµÄµ¦¤µÁ¸É¥ª¤Á¸¥Ä®¤n ¼°ªµÁ¦¸¥¤ ( ) µ¦Á·µ³ªµ¥¤¸jµ¥Â¨³´¨´¬r°µ®µnµ¥ ( ) εªn°Îµ®nµ¥´Ìª¤¸Á¡¸¥¡°Â¨³Îµ®nµ¥´Ìª¦ªÁ¦Èª ( ) ¤¸µ¸É°¦¥r³ªµ¥Â¨³Á¡¸¥¡° ( ) ¤¸¦µµ¦³Ä®o¦·µ¦Äµ¦Á·µ£µ¥Ä¦·Áªª´ªrÁ¸¥Ä®¤n ( ) µ¸É°¥¼nĨo¸É¡´°µ«´¥®¦º°Ã¦Â¦¤ 5. {´¥oµµ¦nÁ¦·¤µ¦ µ¥Ä¸É¤¸¨n°ªµ¤¡¹¡°Ä °nµÄµ¦¤µÁ¸É¥ª¤Á¸¥Ä®¤n ¼°ªµÁ¦¸¥¤ ( ) µ¦Ã¬µ¦³µ´¤¡´rµºÉ°·É¡·¤¡r ( ) µ¦Ã¬µ¦³µ´¤¡´rµª·¥» ( ) µ¦Ã¬µ¦³µ´¤¡´rµÃ¦´«r ( ) µ¦Ã¬µ¦³µ´¤¡´rµ°·Á°¦rÁ ( ) µ¦Ã¬µ¦³µ´¤¡´rÃ¥Ân¡´ ( ) µ¦´µ¦Â/·¦¦¤¡·Á«¬ ( ) ¤¸nª¨®¦º°¦µµ¡·Á«¬ 6. {´¥oµ»¨µ¦Ä¸É¤¸¨n°ªµ¤¡¹¡°Ä °nµÄµ¦¤µÁ¸É¥ª¤Á¸¥Ä®¤n¼°ªµÁ¦¸¥¤ ( ) ¡´µ¤¸ÎµªÁ¡¸¥¡°n°µ¦Ä®o¦·µ¦ ( ) ¡´µ¤¸ªµ¤¦³º°¦º°¦oĵ¦Ä®o¦·µ¦ ( ) ¡´µ¤¸µ¦Ä®o¦·µ¦¸É¦ªÁ¦Èª ( ) ¡´µ¤¸¤»¬¥r´¤¡´r¨³°´¥µ«´¥¸ ( ) ¡´µµ¤µ¦Â³ÎµÄ®oªµ¤¦¼oÁ¸É¥ª´µ¦´ÂÅo 94 7. {´¥oµ¦³ªµ¦Ä®o¦·µ¦Ä¸É¤¸¨n°ªµ¤¡¹¡°Ä °nµÄµ¦¤µÁ¸É¥ª¤Á¸¥Ä®¤n ¼°ªµÁ¦¸¥¤ ( ) ¤¸ªµ¤¦ªÁ¦ÈªÄµ¦Ä®o¦·µ¦ ( ) ¤¸«¼¥r¦·µ¦´n°Á¸É¥ªµ¤µ¦Ä®o o°¤¼¨®¦º°nª¥Á®¨º°Ä®o¦·µ¦Ân´n°Á¸É¥ªÅo ( ) ¤¸µ¦Ä®o o°¤¼¨ nµªµ¦ÎµÂ³Îµ¸É¸Ân´n°Á¸É¥ª 8. {´¥oµµ¦¦oµ®¦º°¨´¬³µµ¥£µ¡Ä¸É¤¸¨n°ªµ¤¡¹¡°Ä °nµÄµ¦¤µÁ¸É¥ª ¤Á¸¥Ä®¤n¼°ªµÁ¦¸¥¤ ( ) Á¸¥Ä®¤n¼°ªµÁ¦¸¥¤¤¸ªµ¤Ânµµ°ªµÁ¦¸¥¤°ºÉ ( ) ¤¸µ¦Ân㵥ݪµÁ¦¸¥¤Ânµµ°ªµÁ¦¸¥¤°ºÉ ( ) ¤¸µ¦´ÎµÂ®n¸É°¥¼n °´ªrÂn¨³¦³Á£ÅoÁ®¤µ³¤ ( ) ¸É°¥¼n °´ªr¤¸µ¦°°Â®¦º°ÂnÅoª¥µ¤ ( ) ¡ºÊ¸Éµ¦´Â·¦¦«µ¦°ºÉǤ¸µ¦Ân°¥nµª¥µ¤ ## ° °»»nµ¸É¦»µÄ®oªµ¤¦nª¤¤º°Äµ¦°Â°µ¤## 95 £µª µ¦ª·Á¦µ³®r{´¥oµ o°¤¼¨´ÉªÅ °¨»n¤¨¼oµ´ª°¥nµ¸É¤¸°··¡¨n°ªµ¤¡¹¡°ÄÄ µ¦nµ¥nµ¦¦¤Á¸¥¤Á oµ¤Á¸¥Ä®¤n¼°ªµÁ¦¸¥¤ÅoÄoÂε¨°Ã¨·(Logit Model) ´¸Ê --> READ;FILE="C:\Documents and Settings\ACER\Desktop\MY IS\300 samples.xls"$ --> SAMPLE;1-300$ --> LOGIT;Lhs=WORTH;Rhs=ONE,GENDER,AGE,CAREER,INCOME,MARRIED,EDUCATIO,HOO D ,DISTANCE,BUDDY2,BUDDY3,CAR,EXPEND,MOCYC;Margin$ Normal exit from iterations. Exit status=0. +---------------------------------------------+ | Multinomial Logit Model | | Maximum Likelihood Estimates | | Model estimated: Jul 26, 2009 at 05:27:16PM.| | Dependent variable WORTH | | Weighting variable None | | Number of observations 300 | | Iterations completed 8 | | Log likelihood function -123.7241 | | Restricted log likelihood -204.4035 | | Chi squared 161.3589 | | Degrees of freedom 13 | | Prob[ChiSqd > value] = .0000000 | | Hosmer-Lemeshow chi-squared = 8.75703 | | P-value= .27057 with deg.fr. = 7 | +---------------------------------------------+ 96 +---------+--------------+----------------+--------+---------+---------+ |Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| +---------+--------------+----------------+--------+---------+-------Characteristics in numerator of Prob[Y = 1] Constant -6.63811501 2.07801801 -3.194 .0014 GENDER .39272677 .34505710 1.138 .2551 .59000000 AGE -.12208278 .03570948 -3.419 .0006 38.5200000 CAREER -.17641573 .37062661 -.476 .6341 .66666667 INCOME .00048810 .759615D-04 6.426 .0000 19634.6767 MARRIED -.57326726 .53408482 -1.073 .2831 .60000000 EDUCATIO .15079979 .39995028 .377 .7061 .69000000 HOOD -.60490545 .61282205 -.987 .3236 .86000000 DISTANCE -.00982254 .00630045 -1.559 .1190 27.5233333 BUDDY2 3.55144031 1.39381816 2.548 .0108 .63666667 BUDDY3 2.16010796 1.36686756 1.580 .1140 .32333333 CAR -2.01344964 1.31438642 -1.532 .1256 .79333333 EXPEND .00540314 .00291384 1.854 .0637 482.310000 MOCYC -1.37682885 1.36053190 -1.012 .3115 .16333333 97 +-------------------------------------------+ | Partial derivatives of probabilities with | | respect to the vector of characteristics. | | They are computed at the means of the Xs. | | Observations used are All Obs. | +-------------------------------------------+ +---------+--------------+----------------+--------+---------+---------+ |Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] |Elasticity| +---------+--------------+----------------+--------+---------+------Characteristics in numerator of Prob[Y = 1] Constant -1.26248676 .38989442 -3.238 .0012 Marginal effect for dummy variable is P|1 - P|0. GENDER .07589734 .06784672 1.119 .2633 .06014167 AGE -.02321862 .00659119 -3.523 .0004 1.20121191 Marginal effect for dummy variable is P|1 - P|0. CAREER -.03306223 .06810700 -.485 .6274 .02960314 INCOME .928304D-04 .117004D-04 7.934 .0000 2.44799630 Marginal effect for dummy variable is P|1 - P|0. MARRIED -.10578736 .09460200 -1.118 .2635 .08524755 Marginal effect for dummy variable is P|1 - P|0. EDUCATIO .02907612 .07856997 .370 .7113 .02694526 Marginal effect for dummy variable is P|1 - P|0. HOOD -.10249502 .09154475 -1.120 .2629 .11838538 DISTANCE -.00186812 .00120683 -1.548 .1216 .06905635 Marginal effect for dummy variable is P|1 - P|0. BUDDY2 .68070505 .19762580 3.444 .0006 .58206028 Marginal effect for dummy variable is P|1 - P|0. BUDDY3 .33452380 .17152540 1.950 .0511 .14526948 Marginal effect for dummy variable is P|1 - P|0. CAR -.27721249 .12737284 -2.176 .0295 .29536932 EXPEND .00102761 .00055097 1.865 .0622 .66565860 Marginal effect for dummy variable is P|1 - P|0. MOCYC -.30546081 .32165814 -.950 .3423 .06700809 98 +---------------------+ | Marginal Effects for| +----------+----------+ | Variable | All Obs. | +----------+----------+ | ONE | -1.26249 | | GENDER | .07590 | | AGE | -.02322 | | CAREER | -.03306 | | INCOME | .00009 | | MARRIED | -.10579 | | EDUCATIO | .02908 | | HOOD | -.10250 | | DISTANCE | -.00187 | | BUDDY2 | .68071 | | BUDDY3 | .33452 | | CAR | -.27721 | | EXPEND | .00103 | | MOCYC | -.30546 | +----------+----------+ +----------------------------------------+ | Fit Measures for Binomial Choice Model | | Logit model for variable WORTH | +----------------------------------------+ | Proportions P0= .423333 P1= .576667 | | N = 300 N0= 127 N1= 173 | | LogL = -123.72411 LogL0 = -204.4035 | | Estrella = 1-(L/L0)^(-2L0/n) = .49547 | +----------------------------------------+ | Efron | McFadden | Ben./Lerman | | .44355 | .39471 | .72933 | | Cramer | Veall/Zim. | Rsqrd_ML | | .44562 | .60641 | .41600 | +----------------------------------------+ | Information Akaike I.C. Schwarz I.C. | | Criteria .91816 327.30117 | +----------------------------------------+ 99 ¦³ª´·¼oÁ ¸¥ ºÉ°µ¥¤µr¥µ¸ ª´Áº°eÁ·ª´¸É 29Áº°¡§«·µ¥¡.«. 2527 ¦³ª´·µ¦«¹¬µÎµÁ¦Èµ¦«¹¬µ¦³´¤´¥¤«¹¬µ°¨µ¥Ã¦Á¦¸¥»ªµ¥rª·¥µ¨´¥ ´®ª´¨Îµµeµ¦«¹¬µ2545 εÁ¦Èµ¦«¹¬µ¦³´¦·µ¦¸Á«¦¬«µ¦´· ¤®µª·¥µ¨´¥Á¸¥Ä®¤n eµ¦«¹¬µ2550
© Copyright 2024 ExpyDoc