PowerPoint プレゼンテーション

回帰分析の出題(規定問題)
理論上,y = x1 + x2 で表される現象を,
実験・観測した。データから,最小2乗法に
よる近似モデルを2種類作る。
(a) 独立変数として,x1 , x2 の2つを選び,
推定式 y = b0 + b1x1 + b2x2
の各係数 bi を回帰分析により同定する。
(b) (a)で得た x1, x2 の中で有意性の高い変
数を1つ選び,(a)と同様の回帰分析を行う。
変数減少後の推定式 y = b0 + bixi
031018
1
規定問題データ
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
X1
0.1
1.2
2.3
2.8
1.0
2.0
3.3
1.3
2.1
2.8
3.3
2.8
1.0
X2
0.1
0.0
0.2
0.1
-1.2
-1.1
-1.0
0.8
1.1
0.8
0.5
-0.2
2.5
Y
0.1
1.3
2.5
3.2
0.1
1.0
2.0
2.0
3.0
3.9
3.2
2.8
4.0
合計
26.0
2.6
29.1
031023
奇数日 偶数日
〇
〇
〇
〇
〇
〇
〇
〇
〇
〇
〇
〇
〇
〇
〇
〇
〇
〇
〇
〇
〇
〇
〇
各人の誕生日
の奇偶に応じ
てデータを選
択のこと。
規定問題の
評価:
(散布図),
(計算),
(考察)
2
規定問題の考察手順(1)
(1)散布図( y vs. x1 と y vs. x2 )を描き,直
感でそれぞれの勾配を求める。
(a) あらかじめ x2 vs. x1 の散布図を描い
ておく。データは, x1 = 0, = 1, = 2, = 3 ....,
x2 = 0, = 1, = 2, = 3 ....の近傍でばらつい
ている。各変数の値が近いものは,それ
ぞれ1つのグループにする。
031023
3
散布図 x2 vs x1
031023
4
規定問題の考察手順(1)
(b) 各散布図上( y vs. x1 と y vs. x2 )で,
パラメータ(隠れている変数)x2 ( x1 )
のグループごとに勾配線を目視で定規
で引く。
(c) それらの直線の勾配をまとめて(平
均を取るなり,目の子で引くなり),一つ
の直感的な勾配を求め,その勾配の
直線を散布図上の任意の場所に引く
(切片が不明のため)。
031023
5
散布図 y vs x1
031023
6
散布図 y vs x2
031023
7
規定問題の考察手順(2)(4)
(2)各種統計量を算出すること。
|相関係数|≦1,|自己相関係数|=1
(3)得られた回帰直線を散布図上に描き,
直感的勾配と比較する。
(4)各変数の t 検定を行う。すなわち,|t|
値(絶対値)の一番小さい値が t 分布表の
値 t(自由度,0.05)より小さければ,その変
数を削除して再度回帰分析をする。
031023
8
規定問題の考察手順(4)(5)
(4つづき)規定問題では,この条件が成立しな
くても,変数減少法の勉強のために|t|
値の小さいほうの変数を強制的に削除し
て分析する。
(5)変数減少の結果,回帰係数の推定値で
ある勾配を図上に描き,その勾配を,変
数減少前の回帰係数や直感的勾配と比
較する。
031024
9