第1章 場合の数と確率 第1節 場合の数 1 集合の要素の個数 (第3回) 復習 問題集 𝑛(U)=100 𝑛(A ∩ B)=15 205 n(A∪B)=70 U (100) A (55) (33) B 𝑛(A ∩ B)=40 (40) (1) 𝑛(A ∩ B) =n(A∪ B) =100-70=30 (2) 𝑛(A ∩ B) =70-(40+15) =15 (3) 𝑛(A) =40+15 =55 (4) 𝑛(B) =15+18 =33 (15) (15) (30) 例 U (100) 1から100までの整数のうち、 A (33) A ={ n | n は3の倍数} B ={ n | n は4の倍数} C ={ n | n は5の倍数} 𝑛(A) =100÷3 =33 𝑛(C) =100÷5 =20 𝑛(B) =100÷4 =25 (25) B 3,4,5のうちすくなくとも1つで割り切れる数の個数を求めよ。 𝑛(A∪B∪C) (20) C U (100) 例 A (33) A ∩B ={ n | n は12の倍数} 𝑛(A ∩ B) =100÷12 =8 (1) B ∩C ={ n | n は20の倍数} 𝑛(B ∩ C) =100÷20 =5 C ∩A ={ n | n は15の倍数} 𝑛(C ∩ A) =100÷15 =6 A ∩ B ∩C ={ n | n は60の倍数} 𝑛(A ∩ B ∩ C) =100÷60 =1 (6) (8) (25) B (20) (5) C n(A∪B∪C)= n(A) +n(B) +n(C) -n(A∩ C) -n(B∩ C) -n(C∩ A) +n(𝐀 ∩ 𝐁 ∩C) U A A A U B B U U A B U U A C B C A C B C n(A∪B∪C) = n(A) +n(B) +n(C) -n(A∩ C) -n(B∩ C) -n(C∩ A) +n(A ∩ B ∩C) U 例 A (33) A∪B∪C ={ n | n 3,4,5のうちすくなくとも n(A∪B∪C)= (6) (8) 1つで割り切れる数} (1) 33 +25 +20 (25) -8 -5 -6 +1 =60 B (20) (5) C 問題演習 教科書 P10 練習2 問題集 209 (210) (211) 解答 教科書 練習2 𝑛(A) =100÷2 =50 U (100) 𝑛(B) =100÷3 =33 A (50) 𝑛(C) =100÷5 =20 𝑛(A ∩ B) =100÷6 =16 𝑛(B ∩ C) =100÷15 =6 𝑛(C ∩ A) =100÷10 =10 𝑛(A ∩ B ∩ C) =100÷30 =3 n(A∪B∪C) =50+33+20-16-6-10+3 =74 (10) (16) (3) (33) B (20) (6) C 解答 問題集 209 U A ={ 1, 2, 3, 4, 6, 8, 12, 24, 48 } 𝑛(A) = 10 B ={ 1, 3, 5, ・・・, 29 } 𝑛(B) = 15 C ={ 1, 2, 3, 6, 9, 18, 27, 54 } (1) A∩ B ={ 1, 3 } A (10) 𝑛(C) = 8 𝑛(A ∩ B) = 2 B∩ C ={ 1, 3, 9, 27 } 𝑛(B ∩ C) = 4 C∩ A ={ 1, 2, 3, 6 } 𝑛(C ∩ A) = 4 (4) (2) (15) B (8) (4) C 解答 問題集 209 U A ={ 1, 2, 3, 4, 6, 8, 12, 24, 48 } 𝑛(A) = 10 B ={ 1, 3, 5, ・・・, 29 } 𝑛(B) = 15 C ={ 1, 2, 3, 6, 9, 18, 27, 54 } (2) A∩ B ∩ C ={ 1, 3 } =10+15+18-2-4-4+2 =25 (4) (2) 𝑛(C) = 8 𝑛(A ∩ B ∩ C) = 2 (3) 𝑛(A ∩ B ∩ C) A (10) (2) (15) B (8) (4) C 解答 問題集 210 𝑛(U)=200 𝑛(A) =200÷3 =66 U (200) 𝑛(B) =200÷5 =40 A (66) 𝑛(C) =200÷8 =25 (1) 𝑛(B ∩ C) =200÷40 =5 (40) 𝑛(C ∩ A) =200÷24 =8 B 𝑛(A ∩ B ∩ C) =200÷120 =1 n(A∪B∪C) =66+40+25-13-5-8+1 (8) (13) 𝑛(A ∩ B) =200÷15 =13 =106 (25) (5) C 解答 問題集 210 U (200) A (66) (2) n(A∪B∪C) =200-106 =94 (3) n((A ∩ B) ∩ C) = n(A∪B∪C)-𝑛(C) =106-25 =81 (8) (13) (1) (40) B (25) (5) C 解答 問題集 211 U (1) n(A∪C)=78 A A (65) (65) (x) C (14) (11) (11) (40) n(A∪C) = n(A) + n(C) - 𝑛(A ∩ C) 55 = 65 + x - 11 ∴ x = 24 B (24) C 解答 問題集 211 U (2) n(A∪C)=78 B A (65) (40) (24) C (11) (14) (y) (40) n(B∪C) = n(B) + n(C) - 𝑛(B ∩ C) 55 = 40 + 24 - y ∴ y=9 B (24) (9) C 解答 問題集 211 U (2) n(A∪B∪C) A (65) = n(A) +n(B) +n(C) (11) (14) -n(A∩ C) -n(B∩ C) -n(C∩ A) (4) +n(A ∩ B ∩C) (40) 99 = 65+40+24-14-9-11+n(A ∩ B ∩C) n(A ∩ B ∩C) = 99-129+34 =4 B (24) (9) C 解答 問題集 211 U (3) n(A ∩ (B∪C)) = 65-(14+11-4) = 44 A (65) n(B ∩ (C∪A)) = 40-(14+9-4) = 21 (44) n(A ∩ (B∪C)) = 65-(14+11-4) = 8 ∴ 44+21+8=73 (11) (14) (4) (40) (21) B (8) (9) (24) C
© Copyright 2024 ExpyDoc