第1章 場合の数と確率 第1節 場合の数 1 集合の要素の個数 (演習) 解答 問題集 201 U U ={ n | n は1から200までの整数 } A ={ n | n は3の倍数} A (28) B (66) B ={ n | n は7の倍数} (9) (1) 𝑛(A) =200÷3=66 (2) 𝑛(B) =200÷7=28 (3) 𝑛(A ∩B) =200÷21=9 (4) 𝑛(A ∪B) =66+28-9=85 解答 問題集 U 202 A ={ n | n は8の倍数} 𝑛(A) =150÷8=18 A (18) (12) B B ={ n | n は12の倍数} 𝑛(B) =150÷12=12 (6) 𝑛(A ∩B) =150÷24=6 (1) 𝑛(A) =150-18=132 (2) 𝑛(B) =150-12=138 (3) 𝑛(A ∩ B) =18-6=12 (4) n(A∪ B) =150-(18+12-6)=126 解答 問題集 203 𝑛(A∪B)=52 𝑛(A∪B)= 𝑛(A) + 𝑛(B) − 𝑛(A ∩ B) 52 = 𝑛(A) + 50 − 28 𝑛(A) = 52 − 50 + 28 = 30 U ( ) A (30) (50) B (28) 解答 問題集 (301) (33) B A (61) U 204 𝑛(U) =500-200 +1 =301 A ={ n | n は5の倍数} ={5・40, 5・41, ・・・, 5・100} (7) B ={ n | n は9の倍数} ={9・23, 9・24, ・・・, 9・55} A ∩B ={ n | n は45の倍数} ={45・5, 45・6, ・・・, 45・11} 𝑛(A) =100-40+1 =61 (1) 𝑛(A∪B) 𝑛(B) =55-23+1=33 =61+33-7=87 𝑛(A ∩B) =11-5+1=7 (2) n(A ∩ B) =33-7=26 解答 問題集 U (100) 205 𝑛(U)=100 𝑛(A ∩ B)=15 A n(A∪B)=70 (55) (40) (33) B (15) (15) 𝑛(A ∩ B)=40 (1) 𝑛(A ∩ B) =n(A∪ B) =100-70=30 (2) 𝑛(A ∩ B) =70-(40+15) =15 (3) 𝑛(A) =40+15 =55 (4) 𝑛(B) =15+18 =33 (30) 解答 問題集 206 (1) 𝑛(A∪B) = 𝑛(U) − n(A∪ B) = 50 − 13 = 37 (2) 𝑛(A) = 𝑛(A∪B) − n(A ∩ B) =37 − 10 =27 (50) A ( ) U (50) B (10) (13) 解答 問題集 (x) A (0.5 x) (0.6 x) B U 207 𝑛(U) = x 𝑛(A ∩ B) =0.5𝑥 − 0.3𝑥 =0.2𝑥 𝑛(A∪B)= 𝑛(A) + 𝑛(B) − 𝑛(A ∩ B) 𝑥 − 8 = 0.5𝑥 + 0.6𝑥 − 0.3𝑥 𝑥 − 8 = 0.8𝑥 0.2𝑥 = 8 8 = 40 𝑥= 0.2 ∴20% (0.3 x) (8) 解答 問題集 U (100) 208 A (68) (53) B (1) 68+53-100 =21 21人以上53人以下 (2) 100-68 =32 0人以上32人以下 (68) U A (100) B (53) 解答 問題集 209 U A ={ 1, 2, 3, 4, 6, 8, 12, 24, 48 } 𝑛(A) = 10 B ={ 1, 3, 5, ・・・, 29 } 𝑛(B) = 15 C ={ 1, 2, 3, 6, 9, 18, 27, 54 } (1) A∩ B ={ 1, 3 } A (10) 𝑛(C) = 8 𝑛(A ∩ B) = 2 B∩ C ={ 1, 3, 9, 27 } 𝑛(B ∩ C) = 4 C∩ A ={ 1, 2, 3, 6 } 𝑛(C ∩ A) = 4 (4) (2) (15) B (8) (4) C 解答 問題集 209 U A ={ 1, 2, 3, 4, 6, 8, 12, 24, 48 } 𝑛(A) = 10 B ={ 1, 3, 5, ・・・, 29 } 𝑛(B) = 15 C ={ 1, 2, 3, 6, 9, 18, 27, 54 } (2) A∩ B ∩ C ={ 1, 3 } =10+15+18-2-4-4+2 =25 (4) (2) 𝑛(C) = 8 𝑛(A ∩ B ∩ C) = 2 (3) 𝑛(A ∩ B ∩ C) A (10) (2) (15) B (8) (4) C 解答 問題集 210 𝑛(U)=200 𝑛(A) =200÷3 =66 U (200) 𝑛(B) =200÷5 =40 A (66) 𝑛(C) =200÷8 =25 (1) 𝑛(B ∩ C) =200÷40 =5 (40) 𝑛(C ∩ A) =200÷24 =8 B 𝑛(A ∩ B ∩ C) =200÷120 =1 n(A∪B∪C) =66+40+25-13-5-8+1 (8) (13) 𝑛(A ∩ B) =200÷15 =13 =106 (25) (5) C 解答 問題集 210 U (200) A (66) (2) n(A∪B∪C) =200-106 =94 (3) n((A ∩ B) ∩ C) = n(A∪B∪C)-𝑛(C) =106-25 =81 (8) (13) (1) (40) B (25) (5) C 解答 問題集 211 U (1) n(A∪C)=78 A A (65) (65) (x) C (14) (11) (11) (40) n(A∪C) = n(A) + n(C) - 𝑛(A ∩ C) 78 = 65 + x - 11 ∴ x = 24 B (24) C 解答 問題集 211 U (2) n(B∪C)=55 B A (65) (40) (24) C (11) (14) (y) (40) n(B∪C) = n(B) + n(C) - 𝑛(B ∩ C) 55 = 40 + 24 - y ∴ y=9 B (24) (9) C 解答 問題集 211 U (2) n(A∪B∪C) A (65) = n(A) +n(B) +n(C) (11) (14) -n(A∩ B) -n(B∩ C) -n(C∩ A) (4) +n(A ∩ B ∩C) (40) 99 = 65+40+24-14-9-11+n(A ∩ B ∩C) n(A ∩ B ∩C) = 99-129+34 =4 B (24) (9) C 解答 問題集 211 U (3) n(A ∩ (B∪C)) = 65-(14+11-4) = 44 A (65) n(B ∩ (C∪A)) = 40-(14+9-4) = 21 (44) (11) (14) n(A ∩ (B∪C)) = 65-(14+11-4) = 8 (4) ∴ 44+21+8=73 (40) (21) B (8) (9) (24) C
© Copyright 2024 ExpyDoc