Document

第1章
場合の数と確率
第1節 場合の数
1
集合の要素の個数 (演習)
解答
問題集
201
U
U ={ n | n は1から200までの整数 }
A ={ n | n は3の倍数}
A
(28) B
(66)
B ={ n | n は7の倍数}
(9)
(1) 𝑛(A) =200÷3=66
(2) 𝑛(B) =200÷7=28
(3) 𝑛(A ∩B) =200÷21=9
(4) 𝑛(A ∪B) =66+28-9=85
解答
問題集
U
202
A ={ n | n は8の倍数}
𝑛(A) =150÷8=18
A
(18)
(12) B
B ={ n | n は12の倍数}
𝑛(B) =150÷12=12
(6)
𝑛(A ∩B) =150÷24=6
(1) 𝑛(A) =150-18=132
(2) 𝑛(B) =150-12=138
(3) 𝑛(A ∩ B) =18-6=12
(4) n(A∪ B) =150-(18+12-6)=126
解答
問題集
203
𝑛(A∪B)=52
𝑛(A∪B)= 𝑛(A) + 𝑛(B) − 𝑛(A ∩ B)
52 = 𝑛(A) + 50 − 28
𝑛(A) = 52 − 50 + 28 = 30
U
( )
A (30)
(50) B
(28)
解答
問題集
(301)
(33) B
A (61)
U
204
𝑛(U) =500-200 +1 =301
A ={ n | n は5の倍数} ={5・40, 5・41, ・・・, 5・100}
(7)
B ={ n | n は9の倍数} ={9・23, 9・24, ・・・, 9・55}
A ∩B ={ n | n は45の倍数}
={45・5, 45・6, ・・・, 45・11}
𝑛(A) =100-40+1 =61
(1) 𝑛(A∪B)
𝑛(B) =55-23+1=33
=61+33-7=87
𝑛(A ∩B) =11-5+1=7
(2) n(A ∩ B) =33-7=26
解答
問題集
U (100)
205
𝑛(U)=100
𝑛(A ∩ B)=15
A
n(A∪B)=70
(55)
(40)
(33) B
(15)
(15)
𝑛(A ∩ B)=40
(1) 𝑛(A ∩ B) =n(A∪ B) =100-70=30
(2) 𝑛(A ∩ B) =70-(40+15) =15
(3) 𝑛(A) =40+15 =55
(4) 𝑛(B) =15+18 =33
(30)
解答
問題集
206
(1) 𝑛(A∪B) = 𝑛(U) − n(A∪ B)
= 50 − 13 = 37
(2) 𝑛(A) = 𝑛(A∪B) − n(A ∩ B)
=37 − 10 =27
(50)
A ( )
U
(50) B
(10)
(13)
解答
問題集
(x)
A (0.5 x) (0.6 x) B
U
207
𝑛(U) = x
𝑛(A ∩ B)
=0.5𝑥 − 0.3𝑥 =0.2𝑥
𝑛(A∪B)= 𝑛(A) + 𝑛(B) − 𝑛(A ∩ B)
𝑥 − 8 = 0.5𝑥 + 0.6𝑥 − 0.3𝑥
𝑥 − 8 = 0.8𝑥
0.2𝑥 = 8
8
= 40
𝑥=
0.2
∴20%
(0.3 x)
(8)
解答
問題集
U (100)
208
A (68)
(53) B
(1) 68+53-100 =21
21人以上53人以下
(2) 100-68
=32
0人以上32人以下
(68)
U
A
(100)
B
(53)
解答
問題集
209
U
A ={ 1, 2, 3, 4, 6, 8, 12, 24, 48 }
𝑛(A) = 10
B ={ 1, 3, 5, ・・・, 29 }
𝑛(B) = 15
C ={ 1, 2, 3, 6, 9, 18, 27, 54 }
(1) A∩ B ={ 1, 3 }
A (10)
𝑛(C) = 8
𝑛(A ∩ B) = 2
B∩ C ={ 1, 3, 9, 27 }
𝑛(B ∩ C) = 4
C∩ A ={ 1, 2, 3, 6 }
𝑛(C ∩ A) = 4
(4)
(2)
(15)
B
(8)
(4)
C
解答
問題集
209
U
A ={ 1, 2, 3, 4, 6, 8, 12, 24, 48 }
𝑛(A) = 10
B ={ 1, 3, 5, ・・・, 29 }
𝑛(B) = 15
C ={ 1, 2, 3, 6, 9, 18, 27, 54 }
(2) A∩ B ∩ C ={ 1, 3 }
=10+15+18-2-4-4+2 =25
(4)
(2)
𝑛(C) = 8
𝑛(A ∩ B ∩ C) = 2
(3) 𝑛(A ∩ B ∩ C)
A (10)
(2)
(15)
B
(8)
(4)
C
解答
問題集
210
𝑛(U)=200
𝑛(A) =200÷3 =66
U (200)
𝑛(B) =200÷5 =40
A (66)
𝑛(C) =200÷8 =25
(1)
𝑛(B ∩ C) =200÷40 =5
(40)
𝑛(C ∩ A) =200÷24 =8
B
𝑛(A ∩ B ∩ C) =200÷120 =1
n(A∪B∪C)
=66+40+25-13-5-8+1
(8)
(13)
𝑛(A ∩ B) =200÷15 =13
=106
(25)
(5)
C
解答
問題集
210
U (200)
A (66)
(2) n(A∪B∪C) =200-106 =94
(3) n((A ∩ B) ∩ C)
= n(A∪B∪C)-𝑛(C)
=106-25
=81
(8)
(13)
(1)
(40)
B
(25)
(5)
C
解答
問題集
211
U
(1) n(A∪C)=78
A
A (65)
(65)
(x)
C
(14)
(11)
(11)
(40)
n(A∪C) = n(A) + n(C) - 𝑛(A ∩ C)
78 = 65 + x - 11
∴ x = 24
B
(24)
C
解答
問題集
211
U
(2) n(B∪C)=55
B
A (65)
(40)
(24)
C
(11)
(14)
(y)
(40)
n(B∪C) = n(B) + n(C) - 𝑛(B ∩ C)
55 = 40 + 24 - y
∴ y=9
B
(24)
(9)
C
解答
問題集
211
U
(2) n(A∪B∪C)
A (65)
= n(A) +n(B) +n(C)
(11)
(14)
-n(A∩ B) -n(B∩ C) -n(C∩ A)
(4)
+n(A ∩ B ∩C)
(40)
99 = 65+40+24-14-9-11+n(A ∩ B ∩C)
n(A ∩ B ∩C) = 99-129+34 =4
B
(24)
(9)
C
解答
問題集
211
U
(3) n(A ∩ (B∪C)) = 65-(14+11-4) = 44
A (65)
n(B ∩ (C∪A)) = 40-(14+9-4) = 21
(44)
(11)
(14)
n(A ∩ (B∪C)) = 65-(14+11-4) = 8
(4)
∴ 44+21+8=73
(40) (21)
B
(8)
(9)
(24)
C