不等式の表す領域 直線で分けられた領域 y > x + 1 の表す領域を図示してみよう。 ◎ y = x + 1 を満たす点の集合 y 不等式 (x , x + 1) = (x , y) (0,0+1) = (0,1) (1,1+1) = (1,2) 4 3 2 1 (2,2+1) = (2,3) (3,3+1)= (3,4) y=x+1 O 1 2 3 x 不等式 ◎ y > x + 1 の表す領域を図示してみよう。 y> x+ 1 x=0 を満たす点の集合 5 のとき y > 0 + 1 = 1 を満たす点 4 (0,2),(0,3),(0,4)・・・ 3 x=1 のとき x = 2 のとき y > 2 + 1 = 3 を満たす点 (2,4),(2,5),(2,6)・・・ y=x+1 2 y > 1 + 1 = 2 を満たす点 (1,3),(1,4),(1,5)・・・ y 1 -3 -2 -1 O 1 2 3 x x=t のとき ( t , t + 1 ) より 上側 y >t + 1 y y > t + 1 を満たす点は, にある。 (t,t+1) t +1 また, y <t + 1 を満たす点は, (t,t+1) より 下側 1 y<t+1 -1 O にある y=x+1 t x したがって,次のことがなりたつ。 不等式 y>x+1 y の表す領域は, 直線 y = x + 1 の 上側 y=x+1 境界線を 含まない。 不等式 y < x + 1 の表す領域は, -1 1 O 直線 y = x + 1 の 下側 境界線を 含まない。 直線 y=x+1 を,この領域の 境界線 という。 x ●直線で分けられた領域 一般に次のことがなりたつ。 不等式 y > m x + n の表す領域は, y 直線 y = m x + n の 上 側 y =m x + n 境界線は 含まない。 不等式 y < m x + n の表す領域は, 直線 y = m x + n の 下 側 境界線は 含まない。 n O x まとめ(領域の図示) 1. 境界線 y 2. ① = m x + n を描く。 y > m x + n ,y ≧ m x + n y = m x + n の 上側 ② に斜線 y =m x + n y < m x + n ,y ≦ m x + n y = m x + n の 下側 に斜線 3. 境界線について ① y ≧ ,≦ のとき ② > ,< のとき n O 境界線を 含む 境界線を 含まない x
© Copyright 2024 ExpyDoc