Calculus 2 Problem Set 2 Answers October 2014 [1] (1) 定義域 {(x, y)|x2 + y 2 < 1}, 値域 {z|z ≥ 1} (2) 定義域 {(x, y)|xy > 0}, 値域 {z| − ∞ < z < ∞} [2] √ 1/2, (3) 2 6, (4) 1, (5) √ √ √ √ x−y+2 x−2 y √ √ = x + y + 2 を用いる。2, x− y (1) 5/2, (7) (2) x2 −2xy+y 2 x−y 1, (6) (8) = x − y を用いる。0, 0 [3] (1) y = mx に沿って近づけて極限を調べる, (2) y = mx2 に沿って近づける。 [4] (2) fx = 4xey , fy = 2x2 ey , (3) (1) fx = 6x, fy = 2, (4) fx = −y 2 /x2 , fy = 2y/x, (5) fx = 2x + yexy , fy = xexy , fx = 1/(1 + ey ), fy = −xey /(1 + ey )2 , (6) fx = 12(9x2 y + 3x)11 (18xy + 3), fy = 12(9x2 y + 3x)11 (9x2 ), (7) fx = e3x (2x log y + 3x2 log y), fy = x2 e3x /y, (8) fx = (1 + xy − y log y)exy , fy = (x2 − x log y − 1/y)exy (9) fx = 2y/(x + y)2 , fy = −2x/(x + y)2 , (10) (11) fx = 4x + 3y, fy = 3x − 8y, (12) (14) zx = sin y, zy = x cos y, (15) fx = 2y(1 − x)/ex , fy = 2x/ex zx = y1 , zy = − yx2 , (18) fx = y −x2 +y 2 (x2 +y 2 )2 , fy = −2xy (x2 +y 2 )2 , [5] fx (2, −3) = 1, fy (2, −3) = 3 [6] fx (1, 2) = 6, fy (1, 2) = −1 fx = x1 , fy = − y1 fx = cos x − sin(x + y), fy = cos y − sin(x + y), (16) zx = e cos y + e cos x, zy = −ex sin y + ey sin x, x (13) (17) zx = (x2 + 2x + 2y)ex , zy = 2ex , (19) zx = cos 2x, zy = cos 2y. [7] (1) fx = 3x2 y + 2y 2 , fxx = 6xy, fy = x3 + 4xy, fyy = 4x, fxy = fyx = 3x2 + 4y, (2) fx = ey + 4x3 y, fxx = 12x2 y, fy = xey + x4 + 3y 2 , fyy = xey + 6y, fxy = fyx = ey + 4x3 , (3) fxx = 2, fxy = −2, fyy = 6y (4) zxx = −4 sin(2x − 3y), zxy = 6 sin(2x − 3y), zyy = −9 sin(2x − 3y) (5) fxx = 0, fxy = 2e2y , fyy = 4xe2y (6) zxx = 2(1−x2 +y 2 ) (1+x2 +y 2 )2 , zxy = −4xy (1+x2 +y 2 )2 , zyy = 2(1+x2 −y 2 ) (1+x2 +y 2 )2 , (7) fxx = ex sin y + ey cos x, fxy = ex cos y + ey sin x, fyy = −ex sin y − ey cos x (8) zxx = −6y (x+2y)3 , zxy = 3(x−2y) (x+2y)3 , zyy = 12x (x+2y)3
© Copyright 2024 ExpyDoc