微分積分 II 2014/10/10 1/3 問題 次の関数の偏導関数と二階偏導関数をすべて求めよ。 (i) (iii) √ f (x, y) = x + 2xy f (x, y) = ln(x2 + y 2 ) (ii) f (x, y) = 3x2 ey + xyex 解答 (i) 関数 f (x, y) を x に関して偏微分すると、 } { ∂ ∂ √ x + 2xy f (x, y) = ∂x ∂x { } ∂ = (x + 2xy)1/2 ∂x 1 = (x + 2xy)1/2−1 × (1 + 2y) 2 1 + 2y = 1 2(x + 2xy) 2 { } ∂ ∂ 1/2 fy (x, y) = f (x, y) = (x + 2xy) ∂y ∂y 1 = (x + 2xy)1/2−1 × 2x 2 x = 1 (x + 2xy) 2 fx (x, y) = (1) (2) ここで、式 (1) を用いて { } ∂ ∂ 1 + 2y fx (x, y) = 1 ∂x ∂x 2(x + 2xy) 2 { } 1 ∂ 1 + 2y = (x + 2xy)− 2 ∂x 2 { } 1 1 + 2y ∂ = × (x + 2xy)− 2 2 ∂x { } 1 + 2y 1 = × − (x + 2xy)−1/2−1 × (1 + 2y) 2 2 (1 + 2y)2 (1 + 2y)2 =− (x + 2xy)−5/2 = − 5 4 4(x + 2xy) 2 { } ∂ ∂ 1 + 2y fxy (x, y) = fx (x, y) = ∂y ∂y 2(x + 2xy) 12 } { 1 ∂ 1 + 2y = 1 2 ∂y (x + 2xy) 2 1 1 1/2−1 2 × 2x 1 2 × (x + 2xy) − (1 + 2y) × 2 (x + 2xy) = × 2 (x + 2xy) x(1 + 2y) 1 = 1 − 3 (x + 2xy) 2 2(x + 2xy) 2 fxx (x, y) = さらに、式 (2) を用いて fyx (x, y) = { } ∂ ∂ x fy (x, y) = ∂x ∂x (x + 2xy) 12 1/3 微分積分 II 2014/10/10 2/3 1 = 1 2 − x(1 + 2y) 1 (x + 2xy) 2(x + 2xy) 2 { } ∂ ∂ x fyy (x, y) = fy (x, y) = ∂y ∂y (x + 2xy) 23 =− x2 1 (x + 2xy) 2 (ii) { } ∂ ∂ f (x, y) = 3x2 ey + xyex ∂x ∂x = 6xey + yex + xyex { } ∂ ∂ fy (x, y) = f (x, y) = 3x2 ey + xyex ∂y ∂y fx (x, y) = = 3x2 ey + xex (3) (4) ここで、式 (3) を用いて { } ∂ ∂ fx (x, y) = 6xey + yex + xyex ∂x ∂x = 6ey + 1 × yex + yex + xyex { } = 6ey + 2y + xy ex { } ∂ ∂ y x fxy (x, y) = fx (x, y) = 6xe + (1 + x)ye ∂y ∂y y = 6xe + (1 + x)ex fxx (x, y) = さらに、式 (4) を用いて { } ∂ ∂ fy (x, y) = 3x2 ey + xex ∂x ∂x { } = 6xey + ex + xex = 6xey + (1 + x)ex { } ∂ ∂ fyy (x, y) = fy (x, y) = 3x2 ey + xex ∂y ∂y fyx (x, y) = = 3x2 ey (iii) { } ∂ ∂ f (x, y) = ln(x2 + y 2 ) ∂x ∂x 2x = 2 x + y2 { } ∂ ∂ 2 2 fy (x, y) = f (x, y) = ln(x + y ) ∂y ∂y 2y = 2 x + y2 fx (x, y) = (5) (6) ここで、式 (5) を用いて fxx (x, y) = { } ∂ ∂ 2x fx (x, y) = ∂x ∂x x2 + y 2 2 × (x2 + y 2 ) − 2x × 2x = (x2 + y 2 )2 2/3 2014/10/10 微分積分 II 3/3 2y 2 − 2x2 2(x2 + y 2 ) − 4x2 = 2 2 2 2 (x + y ) (x + y 2 )2 { } ∂ 2x ∂ fx (x, y) = fxy (x, y) = ∂y ∂y x2 + y 2 2x × (2y) 4xy =− 2 =− 2 (x + y 2 )2 (x + y 2 )2 = さらに、式 (6) を用いて { } ∂ ∂ 2y fy (x, y) = fyx (x, y) = ∂x ∂x x2 + y 2 2y × 2x 4xy =− 2 =− 2 (x + y 2 )2 (x + y 2 )2 { } ∂ ∂ 2y fy (x, y) = fyy (x, y) = ∂y ∂y x2 + y 2 2 × (x2 + y 2 ) − 2y × 2y = (x2 + y 2 )2 2x2 − 2y 2 = 2 (x + y 2 )2 3/3
© Copyright 2024 ExpyDoc