問題 (1) fxx , fxy , fyy を計算せよ. (1) f (x, y) = sin(x cos y), (2) f (x, y) = log(x + ey ), (3) (x + y)2 + (x − y)3 解 (1) ∂f ∂f = cos(x cos y) · cos y, = cos(x cos y) · (−x sin y), ∂x ∂y ∂2f = − sin(x cos y) · (cos y)2 , ∂x2 ∂2f = − sin(x cos y) · (−x sin y) · cos y + cos(x cos y) · (− sin y) ∂x∂y = x sin y cos y sin(x cos y) − sin y cos(x cos y) ∂2f = − sin(x cos y) · (−x sin y) · (−x sin y) + cos(x cos y) · (−x cos y) ∂y 2 = −x2 sin y cos y sin(x cos y) − x cos y cos(x cos y) (2) ∂f x ∂f ey = , = , ∂x x + ey ∂y x + ey ∂2f (x + ey ) − x ey = = , ∂x2 (x + ey )2 (x + ey )2 ∂2f −xey = ∂x∂y (x + ey )2 ∂2f ey (x + ey ) − ey · ey xey = = ∂y 2 (x + ey )2 (x + ey )2 (3) ∂f ∂f = 2(x + y) + 3(x − y)2 , = 2(x + y) − 3(x − y)2 , ∂x ∂y 2 ∂ f = 2 + 6(x − y), ∂x2 ∂2f = 2 − 6(x − y) ∂x∂y ∂2f = 2 + 6(x − y) ∂y 2
© Copyright 2024 ExpyDoc