単振動の合成を巡って ■ 数学の初任者がいて,研究授業を参観した.教材は「三角 関数の合成」 .合成の公式を導き,合成できるようにした後,方 程式・不等式の解法に利用するという流れだ. 研究授業にありがちなやや欲張った指導案で,時間が足りず に少し内容を残したものの,それなりの授業である. ■ 一緒に参観した隣席の若い同僚が「先生(私のことだ)は, 合成で cos 表示の指導ってやりますか?」と聞いてきた. 私「公式を覚えさせる指導はやらないな.cos 表示ができること は,どこかでは指導するけど」 同僚「でも,センター試験で出たことがあって,前の職場では 指導しなくちゃと言われたことがあって」 私「ああ,あったね.あれは受験生が困ったよね.でも,私は cos 表示が必要になったら, から角を引かせる指導をしてい るよ.sin,cos を変えるには角を から引けばよいということ を教えて置いた方が,応用の範囲が広いからね」 ■ センター試験での出題は,1998 年数学 II・B において, 「 ( ) cos 1 〔2〕(3) □ sin に対して, ( ) cos( という出題があった. ) と表せる」 また, 「sin,cos を変えるには角を から引けばよい」とは sin cos , cos sin の公式のことを指す. これによって,次のように解けばよい. ( ) sin( ) cos{ ( cos( ) cos( )} ) ■ 会話はまだ続く. 私「例えばさ,和積公式を使いたいと思っても,sin と cos では 使えないから,どちらかに揃えて使う必要があるよね.今年の センター試験の sin cos の問題があったじゃない.あれも 関数を揃えて,和積を使えば,単位円を使わずに解けるんだよ. 簡単とはいえないけどね」 同僚「へー.そうなんですか」 私「それにさ,cos 表示ってベクトルの内積でしょ」 同僚「え??? ベクトルですか?」 私「うん. ( , ), (cos , sin ) という 2 つのベクトルを 考えるとさ, sin cos は だろ.成分から」 同僚「はい,ああそうですね」 私「一方さ,(メモ用紙に図をかいて) cos( ) だろ」 同僚「ああー.なるほど.そうですね」 私「こういったことを生徒全員に教えて 定着させるわけに行かないけど,こんな 見方ができれば,公式を知らなくても大丈夫だよね」 ■ あれもこれも「公式」として教わったのでは,生徒は覚え きれないし使えない.できるだけ汎用性のある事項を教えてい くことが大切なのだと言うことを,改めて思った次第である. 2012 年 2 月 11 日
© Copyright 2025 ExpyDoc