プラズマ過程から迫る 高エネルギー 天体現象 東京大学RESCEU 茂山研D2 鈴木昭宏 自己紹介 鈴木昭宏 東京大学理学系研究科天文学専攻D2 ビッグバンセンター茂山研 専門は、プラズマ天体物理 特に非熱的放射の起源に興味がある 対象天体はいろいろ →超新星とその残骸,GRBs,AGN,microQSO Outline PART I : プラズマ天体物理の基礎 1.Introduction 2.Vlasov-Maxwell system 3.Plasma Instability 4.Wakefield Acceleration PART II : 最近の興味 1.Bulk comptonization 2.Supernova shock breakout 3.XRF080109/ SN 2008D Outline PART I : プラズマ天体物理の基礎 1.Introduction 2.Vlasov-Maxwell system 3.Plasma Instability 4.Wakefield Acceleration PART II : 最近の興味 1.Bulk comptonization 2.Supernova shock breakout 3.XRF080109/ SN 2008D Outline PART I : プラズマ天体物理の基礎 1.Introduction 2.Vlasov-Maxwell system 3.Plasma Instability 4.Wakefield Acceleration PART II : 最近の興味 1.Bulk comptonization 2.Supernova shock breakout 3.XRF080109/ SN 2008D plasma...... plasma...... Collisionless plasma 構成粒子同士の衝突が無視できるプラズマ Maxwell-Boltzmann分布からずれた速度分布(非熱的成分など)が実現さ れる 宇宙の至る所に存在する(地球磁気圏,SNR,GRB,AGN jet,ICMなど) 3CALE ,ENGTH -EAN &REE 0ATH %LECTRON Collisionless shocks 無衝突プラズマ中で起こる衝撃波 shock frontでの散逸過程は粒子と電磁場との相互作用が担う (cf. 流体衝撃波での散逸過程は粒子衝突による粘性) 粒子加速のサイトと考えられている Ex.) 地球磁気圏でのBow shock, SNR, GRB, PWN, AGN Collisionless shocks Bow shock, SNR : non-relativistic GRB shock : Γ∼100 AGN jet : Γ∼10 Crab Nebula : Γ∼10 6 Plasma parameters Plasma frequency Inertial length Gyrofrequency Outline PART I : プラズマ天体物理の基礎 1.Introduction 2.Vlasov-Maxwell system 3.Plasma Instability 4.Wakefield Acceleration PART II : 最近の興味 1.Bulk comptonization 2.Supernova shock breakout 3.XRF080109/ SN 2008D Plasma kinematics プラズマ= 荷電粒子の集まり + 電磁場 特に、荷電粒子間の相互作用はdebye shieldingによって無視できる collisionも無視することで、粒子は電磁場中の運動方程式に従う 電磁場はMaxwell方程式で決まる dp p =q E+ B dt mγ · E = 4πρ ·B =0 1 B c t 1 E B= + 4πj c t E= : particle Debye Shielding v (θ) = 2Eexp 2 ∆r ρ 4πrin in in in プラズマ= 荷電粒子の集まり + 電磁場 点電荷のポテンシャルが逆の電荷を持つ粒子の遮蔽によって、変更され Eexp る q φ= r デバイ長λDまでしか、粒子間相互作用は効かない 但し、 場 からは外力を受ける vin (θ) = 2Eexp 2 ∆r ρ 4πrin in in Eexp = 1051 erg dp p =q E+ B dt mγ · E = 4πρ ·B =0 1 B c t 1 E B= + 4πj c t E= : particle q φ= r 51 = 10 erg q φ = ex r 1 + α cos(2θ) 1 − 2α/3 + 7α2 /1 ρin q r φ = exp − r λD Fluid vs plasma 流体 'HQVLW\ 6KRFNIURQW Q 7 (OHFWURQ ,RQ X YHORFLW\ 無衝突プラズマ 'HQVLW\ 6KRFNIURQW (OHFWURQ ,RQ 無衝突プラズマの扱いでは速度(位相)空間が必要 Vlasov-Maxwell system me (vy2 + vz2 ) me vx2 f (vx , vy , vz ) ∝ exp − 2 exp − 2 T2 T 2k m (v m2k v B ⊥ B vz ) e e x y + f (vx , vy , vz ) ∝ exp − exp − plasmaの構成粒子の位相空間 2kB T⊥ 2kB2T 2 me (vx + V ) me (vx − V ) での分布関数の時間発展を記 f (vx , vy , vz ) ∝ exp − + exp − exp − 2 2 2k T) 2k T) B BV m (v + V m (v − e x e x 述する方程式 eq. f (vx , vy , vz ) ∝ expVlasov − + exp − exp − 2kB T m∂f 2 2 ∂fj 2kB T∂fj Zj e me v1x2 e (vjy + vz ) f(x,p,t): 位相空間中の微小要素 +f (v vx·, vy , vz+ =0 E+ v× ) ∝ exp − expB − · 2k T 2k T ∂t ∂x Z emj ∂vB B c⊥ ∂f ∂f ∂f 1 j j j j [x,x+Δx] [p,p+Δp]に何個粒 +v· + =0 E+ v×B · 2 ∂t ∂x me (vm c ∂vV )2 j+ V ) m (v − x e x 子がいるか eqs.+ exp − f (vx , vy , vz ) ∝ exp Maxwell − exp − 2kB T 2kB T ∇ · E =4πδ Source termsを介して粒子と ∂fj ∂fj Zj e ∂fj 1 +v· +1 ∂E E + v × B · =0 ∂t ∂x m c ∂v 電磁場が相互作用する j + 4πj ∇×B= c ∂t δ= dp p =q E+ B j dt mγ ·B =0 1 B E= c t 1 E B= + 4πj c t : particle j E =4πδ ∞ ∇ ·∞ ∞ ∞ ∞ ∞∞ ∂E v)dvx dvy dvz Zj e fj1(x, ∇ × B = + 4πj Source −∞ terms −∞ −∞ c ∂t Zj δe = · E = 4πρ j= ∞ j −∞ j= Zj e −∞ −∞ Zj e j ∞ fj (x, v)dvx dvy dvz vf (x, v)dvx dvy dvz j −∞ −∞ −∞ −∞ ∞ ∞ ∞ −∞ −∞ vfj (x, v)dvx dvy dvz Outline PART I : プラズマ天体物理の基礎 1.Introduction 2.Vlasov-Maxwell system 3.Plasma Instability 4.Wakefield Acceleration PART II : 最近の興味 1.Bulk comptonization 2.Supernova shock breakout 3.XRF080109/ SN 2008D Plasma oscillation e-p plasmaのシート electronを動かす 静電場が発生 復元力が働き、振動が励起される (OHFWULFILHOG (OHFWURQ (OHFWURQ ,RQ ,RQ (OHFWURQ (OHFWURQ ,RQ ,RQ Counter-stream As the initial condition, we consider a counter-streaming plasma that is homogeneous in space; fj0 = nj 2π 3/2 vj3 vx2 + vy2 + (vz + Vj )2 vx2 + vy2 + (vz − Vj )2 exp − + exp − 2 vj vj2 , (14) where nj , vj , and Vj are the number density, the thermal velocity, and the bulk velocity of IY species j. We assume that they are constants and ni = ne = n0 for the charge neutrality. In our simulation, the values of these parameters are as follows; n0 = 1, ve = 0.05, vi = 0.05 me /mi , and Ve = Vi = 0.2. The mass ratio is assumed to be mi /me = 1 and 16. The initial configuration of the electromagnetic field is 9] 9 x sin y, φ = Ax = Ay = 0,9 Az = − sin (15) which is equivalent to Ex = Ey = Ez = 0, Bx = sin x cos y, By = − cos x sin y, Bz = 0, (16) where we have introduced a small parameter (= 10−5 ). In other words, we treat the above magnetic field as a perturbation to the initial distribution of particles with no electromagnetic field. Next, we address the boundary conditions. The simulation domain consists of the spatial intervals given by x, y ∈ [−π, π] and the velocity intervals given by vx , vy ∈ [−0.4, 0.4] and vz ∈ [−0.6, 0.6]. The periodic boundary condition is imposed in the x and y direction, Two-stream Instability counter-streaming plasma %X %LECTRON %LECTRON longitudinal electric field のperturbation XAXIS me (vy2 + vz2 ) me vx2 %LECTRON , vz ) ∝ exp − exp − (1) ある方向へ進むelectronが 2kB T⊥ 2kB T 「渋滞」する me (vy2 + vz2 ) me (vx + V )2 me (vx − V )2 (2) + exp − exp − 2kB T 2kB T 2kB T ∂fj Zj e ∂fj 1 +v· + =0 E+ v×B · ∂x mj c ∂v Maxwell eqs. %X ∇ · E =4πδ Zj e j Zj e ∞ ∞ −∞ −∞ −∞ ∞ −∞ ∞ −∞ ∞ −∞ fj (x, v)dvx dvy dvz %LECTRON %LECTRON (4) XAXIS %LECTRON %LECTRON (5) vfj (x, v)dvx dvy dvz %LECTRIC FIELD (3) 1 ∂E ∇×B= + 4πj c ∂t ∞ %LECTRON Two-stream Instability counter-streaming plasma %X %LECTRON %LECTRON longitudinal electric field のperturbation XAXIS me (vy2 + vz2 ) me vx2 %LECTRON , vz ) ∝ exp − exp − (1) ある方向へ進むelectronが 2kB T⊥ 2kB T 「渋滞」する me (vy2 + vz2 ) me (vx + V )2 me (vx − V )2 (2) + exp − exp − 2kB T 2kB T 2kB T ∂fj Zj e ∂fj 1 +v· + =0 E+ v×B · ∂x mj c ∂v Maxwell eqs. %X ∇ · E =4πδ 1 ∂E ∇×B= + 4πj c ∂t Zj e j Zj e ∞ ∞ ∞ −∞ −∞ −∞ ∞ −∞ ∞ −∞ ∞ −∞ fj (x, v)dvx dvy dvz (3) (4) ELECTRIC CURRENT (5) vfj (x, v)dvx dvy dvz %LECTRON %LECTRIC FIELD Weibel Instability z-axis Electron 2 conter-streaming plasma y-axis Electron 1 磁場のperturbationが存在 me (vy2 + vz2 ) me vx2 − exp − z ) ∝ expfilamentの形成 2kB T⊥ 2kB T (vx + V )2 me (vx − V )2 + exp − 2kB T 2kB T exp − ∂fj Zj e ∂fj 1 v· + =0 E+ v×B · ∂x mj c ∂v ZAXIS Maxwell eqs. ∇ · E =4πδ 1 ∂E ∇×B= + 4πj c ∂t Zj e Zj e ∞ ∞ ∞ −∞ −∞ −∞ ∞ −∞ ∞ −∞ ∞ −∞ (1) Electron 3 me (vy2 + 2kB T vz2 ) : Electron (2): Magnetic field : Orbit (3) %LECTRON (4)YAXIS %LECTRON fj (x, v)dvx dvy dvz (5) %LECTRON vfj (x, v)dvx dvy dvz %LECTRON XAXIS Electron 4 x-axis Weibel Instability z-axis Electron 2 conter-streaming plasma y-axis Electron 1 磁場のperturbationが存在 me (vy2 + vz2 ) me vx2 − exp − z ) ∝ expfilamentの形成 2kB T⊥ 2kB T (vx + V )2 me (vx − V )2 + exp − 2kB T 2kB T exp − (1) Electron 3 me (vy2 + 2kB T vz2 ) ∂fj Zj e ∂fj 1 v· + =0 E+ v×B · ∂x mj c ∂v ZAXIS Maxwell eqs. ∇ · E =4πδ Zj e Zj e ∞ ∞ −∞ −∞ −∞ ∞ −∞ ∞ −∞ ∞ −∞ fj (x, v)dvx dvy dvz (2): Magnetic field : Orbit (3) (4)YAXIS 1 ∂E ∇×B= + 4πj c ∂t ∞ : Electron %LECTRIC CURRENT (5) vfj (x, v)dvx dvy dvz XAXIS Electron 4 x-axis me (vy + vz ) me vx f (vx , vy , vz ) ∝ exp − exp − 2kB T⊥ 2kB T Vlasov Equation (2D3V) me (vx + V )2 me (vx − V )2 f (vx , vy , vz ) ∝ exp − + exp − exp − 2kB T 2kB T Vlasov eq. splittin schemeを用いると、 ∂fj ∂fj Zj e ∂fj 1 ∂f ∂f +v· + v×B · =0 E + (16) ∂f + vx ∂f =0 vlasov方程式は5本の1次元移 ∂t ∂x mj c (16) ∂v + ∂x vx =0 ∂t ∂t ∂x 流方程式に分解される ∂f ∂f ∂f + vy ∂f =0 + ∂y vy =0 ∂t 1次元移流方程式なら色んな解 ∂t ∂y ∂f ∂f き方がある ∂f= 0 ∂f + (Ex + vy Bz ) + (Ex + vy B∂v =0 ∂t z) x →僕が使っているのは ∂t ∂vx ∂f 2nd-order van Leer ∂f scheme ∂f ∂f= 0 + (Ey − vx Bz ) + (Ey − vx B∂v =0 ∂t z) y ∂t ∂vy ∂f ∂f ∂f ∂f= 0 + (vx By − vy Bx ) =0 + (vx By − vy B∂v ∂t x) z ∂t ∂vz ∂g ∂g ∂g + aζ ∂g =0 + ∂ζ aζ =0 ∂t ∂t ∂ζ g(t + ∆t, ζ − aζ δt) = T [ζ, ∆t]g(t, ζ) g(t + ∆t, ζ − aζ δt) = T [ζ, ∆t]g(t, ζ) (17) (17) ∂f ∂f (18) + vx (18) =0 ∂t ∂x ∂f ∂f + vy (19)= 0 ∂t ∂y(19) ∂f ∂f + (Ex + vy(20) Bz ) =0 ∂t ∂vx (20) ∂f ∂f + (Ey − vx(21) Bz ) =0 ∂t ∂vy (21) ∂f ∂f (22) =0 + (vx By − vy B(22) x) ∂t ∂vz ∆t ∆t ∆t ∆t ∆t ∆t ]T [y, ]T [x, ]T [v , ]T [v , ]T [v , ]T ∆t ∆t ∆t ∆t ∆t ∆t [vz , ∆t] x y x 4 2 4 4 2 4 ∂g ∂g [x, ]T [y, ]T [x, ]T [v , ]T [v , ]T [v , x 4 y 2 x 4 ]T [vz , ∆t] (23) 4 2 4 + aζ (23) =0 ∆t ∆t ∆t ∆t ∆t ∆t ∂ζ × T×[vTx[v , 4, ]T v) ∆t[vy , 2 ]T ∆t[vx , 4 ]T ∆t[x, 4 ]T ∆t [y, 2 ]T ∆t [x, 4 ]f ∆t(t, x,∂t ]T [v , ]T [v , ]T [x, ]T [y, ]T [x, ]f (t, x, v) x 4 y 2 x 4 4 2 4 g(t + ∆t, ζ − a δt) = T [ζ, ∆t]g(t, ζ) ∂f ∂f= 0 + (Ey − vx Bz ) (19) + (E − v B ) = 0 (19) ∂t y x ∂v z y ∂f ∂f ∂t ∂vy + vx =0 ∂t ∂x ∂f ∂f ∂f ∂f= 0 (20) + (vx By − vy Bx ) ∂f ∂f =0 (20) + (vx By − vy B∂v ∂t x) z + v = 0 y ∂t ∂vz ∂t ∂y ∂g ∂g ∂g + aζ ∂g =0 (21) ∂f ∂f + a = 0 (21) ∂t ∂ζζ + (Ex + vy Bz ) =0 ∂t ∂ζ ∂t ∂vx g(t + ∆t, ζ − aζ δt) = T [ζ, ∆t]g(t, (22) ∂f ζ) ζ) ∂f g(t + ∆t, ζ − aζ δt) = T [ζ, ∆t]g(t, (22) + (Ey − vx Bz ) =0 ∂vy t ∆t ∆t ∆t ∆t ∂t ∆t ]T [y, ]T [x, ]T [v , ]T [v , ]T [v , ]T [v , ∆t] 2 ∆t ]T [x, 4 ∆t ]Tx[vx4, ∆t ]Ty[vy2, ∆t ]Tx[vx4, ∆t ]Tz[vz , ∆t] , ∆t ]T [y, (23) 4 2 4 4 2 4 ∂f ∂f (23) Vz依存性をΔt解く ∆t ∆t ∆t ∆t = 0 +]T (vx[y, By∆t − ]T vy B x) × T×[vTx[v , ∆t ]T [v , ]T [v , ]T [x, [x, ]f (t, x, v) ∆t ∆t ∆t ∆t ∆t ∆t y x 4 2 4 ∂v x4, 4 ]T [vy2, 2 ]T [vx4, 4 ]T∂t[x, 4 ]T [y, 2 ]T [x, z4 ]f (t, x, v) Vlasov Equation (2D3V) ∂g ∂g + aζ =0 ∂t ∂ζ x,y依存性をΔt/2だけ解く Vx,Vy依存性をΔt/2だけ解く ×T [vx , ∆t 4 ]T Vx,Vy依存性をΔt/2だけ解く [x, ∆t 4 ]T (18) (19) (20) (22) ∆t ∆t ∆t ∆t ∆t f (t + ∆t, x, v) =T [x, ∆t ]T [y, ]T [x, ]T [v , ]T [v , ]T [v , x y x 4 2 4 4 2 4 ]T [vz , ∆t] [vy , ∆t 2 ]T (17) (21) g(t + ∆t, ζ − aζ δt) = T [ζ, ∆t]g(t, ζ) [vx , ∆t 4 ]T (16) [y, ∆t 2 ]T [x, ∆t 4 ]f (t, x, v) x,y依存性をΔt/2だけ解く ここで、Maxwell eqs.を解いている (23) S[x, y, ∆t] ≡ T [x, ∆t/2]T [x, ∂fj [y, ∆t]T ∂fj Zj e ∆t/2]. 1 ∂t +v· ∂x + mj ∂fj =0 E+ v×B · c ∂v (10) Maxwell Equations · E =4πδterms in Equations (3) are If the distribution function at t + ∆t is given, the ∇source 1 ∂Ethe time evolution of the calculated by Equation (6). The wave equations (3) governing ∇ × B = + 4πj Source terms c ∂t electromagnetic are solved by using 2the 2Fourier transformation, which imposes the ∞ ∞ ∞ 2 Sourcefields termsは右の式から計 m (v + v ) me vx e y δ =z Zj e fj (x, v)dv x dvy dvz f (vx , vboundary − exp − (1) periodic conditions in the x and y directions implicitly; y , vz ) ∝ exp −∞ −∞ −∞ 算する ∝ 2kB T⊥ 2kB T Lx /2 exp j ∞ Ly /2 ∞ ∞ j= Zj e 2 2 vfj (x, v)dvx dvy dvz 2 2 m−∞ + v−∞ ˆ Veqs.はFFTでフーリ me (vx + )kx , ky ) = me (vx − V )exp[−i(k e (v −∞ Maxwell yy)]h(t, z ) x, y)dxdy, h(t, k j xx + y − (2) + exp − exp − −L /2 −L /2 x 2kB Ty 2kB T 2kB T (11) エ変換して、4th-order Runge ∂fjKutta ∂fj where∂fLjx (L the Z length of 1the computational domain in the x(y) direction and h is a je y ) is +v· + =0 (3) E+ v×B · ∂t of (t, x, ∂xy). The mj inversec Fourier transformation ∂v function is defined by Maxwell eqs. ∇ · E =4πδ Ly /2 Lx /2 1 ˆ kx ,(4) h(t, x, y) = exp[i(kx x + ky y)]h(t, ky )dxdy. (12) 12∂E ∇ × B(2π) = Lx L+y 4πj −Lx /2 −Ly /2 c ∂t ∞ ∞ ∞ These transformations are computed by the standard Fast-Fourier-Transformation scheme δ= Zj e fj (x, v)dvx dvy dvz (see, e.g. Press et−∞ al 2007) numerically. Substitution of these relations for φ, A, ρ, j into −∞ −∞ j (5) equations; ∞ following ∞ Equation (3) leads ∞to the four second-order ordinary differential j= vfj (x, v)dvx dvy dvz Zj e j −∞ 2 ˆ −∞ dφ = 2 dt −∞ −(kx2 + ky2 )φˆ − 4π ρˆ, ˆ d2 A 2 2 ˆ ˆj, = −(k + k ) A − 4π x y dt2 (13) ˆ which are solved by the Runge-Kutta method of order 4. To ensure that the obtained φ(t) e vy , vz− )+∝4πj expy − z exp − f (vx , vy , vz ) ∝ exp ∇ − × Bfx(v =x ,exp 2k T B ⊥ 2kB T⊥ c ∂t 2kB T Procedure f (vx , vy , vz ) ∝ ∞ ∞ 2kB T ∞ me (vx + V )22 me (v Vv)22) x2 − m (v + m (v + V ) m (v − V ) δ =e f (v , vjye, vz ) ∝ exp −2e fxj (x, v)dv+ exp −z 2 e y x xZ z 2y dv x dv m (v + v ) m v exp − + exp − exp − 2k T 2k T e e y z B B x −∞ −∞ −∞ 2 f (vx , vy2k ,jvBz T ) ∝ exp − 2kB T me (vy2 + vz2 ) exp − (2) 2kB T ∞ ∂fj Zj e 2kB T 1 ∂fj j + vvf · (x,∂f +v)dv v × B · =0 E + ∂fjj = ∂fZjj e Zj e 1 jm x dvy dv j · ∂t v × B ∂x cz ∂v 2 j 0 +v· + = (3) E + 2 2 −∞ 2 −∞ 22 2 m (v + v −∞ ∂t ∂x m c ∂v mj e (vx + V j) me vx me (v −yV+) vz ) e y z) mxe (v f (vx , vy , vz ) ∝ fexp − − ∇ · E =4πδ exp − (vx , v−y , vz ) ∝ exp − + exp exp (1) 2k T 2k T 2k T B B 2k T 2k T 1. x積分(1/2ステップ)B∇ · E∂f=4πδ B j B ⊥ ∂fj +v· = 0∇ × B = 1 ∂E + 4πj (4) ∂E ∂x 1 2 2 c ∂t 2∂tZ1j e 2 ∂f ∂fj me (vx ∇ ∂f j j m (v + v ) +× V )B = me (vx −BV ) · e y z ++ 4πj E ∞ ∞ = 0− f (vx , vy , vz ) ∝ exp ∂t − + v · ∂x + m (2) +c exp − c v ×∞ exp ∂t ∂v j δ= 2kB T 2k T 2k T B y dvz Zj e B fj (x, v)dvx dv ∞ ∞ 2. 電荷・電流密度を計算 3. 4. 2k∂fB T∞ ⊥ ∞ 2kexp BT − ∞ −∞ −∞ +v · −∞ −∞ ∂t ∂x (1) (5) =0 feed back 電磁場 E,B 分布関数 f feed back (2) (3) (2) (6) (4) (3) −∞ j v)dv dv dv δ= Zj e f (x, j x y z ∇ · E =4πδ ∂fj ∂f Z e 1 ∞ ∂f ∞ ∞ j j j j + v · −∞ +−∞ −∞ = 0 vf (x, v)dv dv dv (3) Ej = + vZ×eB · j j x y z (5) ∂t ∂x m c ∂v ∞ ∞ j ∞ 1 ∂E −∞ −∞ −∞ j + 4πj ∇ × B =vfj (x, j= Zj e v)dv x dvy dvz c ∂t Maxwell eqs. · E =4πδ −∞ ∇−∞ −∞ j ∞ ∞ ∞ (4) 1 ∂E δ= Zj e∂f f4πj j (x, v)dvx dvy dvz ∇j ×+B =∂fj = + v · 0 (6) 分布関数 f feed back c ∂t −∞ j ∂t−∞ −∞ ∂x ∞∞ ∞ ∞ ∞ ∞ v積分 ∂f Z e ∂fv)dv 1 j δj== j +ZZ j eje E + v × Bfj (x, x0dvy dvdv z dv feed back 電磁場(7) · = v)dv E,B vf j −∞ −∞ −∞ j (x, x y z ∂tj mj −∞ c−∞ −∞ ∂v j (5) ∞ ∞ ∞ j= Zj e vfjj (x, v)dvx dvy dvz分布関数 f feed back ∂fj ∂f 5. x積分 (1/2ステップ) −∞ j (1) (1) (5) (4) (5) (6) me (vy2 + vz2 ) me vx2 f (vx , vy , vz ) ∝ exp − exp 2− 2 2 2kBm T⊥ vz ) 2kApJ BT mSuzuki&Shigeyama e (vy +(2009) e vx f (vx , vy , vz ) ∝ exp − exp − 2kB T⊥ 2 2kB T me (vx + V ) me (vx − V )2 f (vx , vy , vz ) ∝ exp − + exp − exp − 2kB T m (v − V )2 2kB T me (v 2 + v 2 me (vxVlasov + V )2 eq. e x y z 物理空間2次元,速度空間3次元 f (vx , vy , vz ) ∝ exp − + exp − exp − 2 2 2 me (vy + v2k m v e z ) BT x 2kB T ∂fj f (vx , vy ∂f 2k T B Zj e− 1 exp − ∂fj , vzj) ∝ exp のVlasov-Maxwell system 2k T +v· + EB+⊥ v × B · 2kB T = 0 ∂v ∂fj ∂fj ∂t Zj e ∂x 1 mj2 ∂fc j 2 + v · + v × B · = 0 E + m m (v + V ) m (v − V ) e x e x Vlasov eq.とMaxwell eqs.を + exp∂v − exp − ∂tf (vx , vy , v∂x mj − c z ) ∝ exp 2kB T Maxwell eqs.2kB T 交互に時間発展させていく ∇ · E∂f=4πδ ∂fj Zj e ∂fj 1 j Simulation ∂t Source termsを介して粒子と 電磁場が相互作用する ∇×B= δ= Zj e −∞ j j= Zj e j ∞ ∞ −∞ +v· 1 ∂E∂x c ∂t ∞ ∞ −∞ −∞ Source δ∞= −∞ j= j mj + 4πj =0 E+ v×B · c ∂v ∇ · E =4πδ 1 ∂E ∇ × B = + 4πj fj (x, v)dvxc dv terms ∂ty dvz Zj e ∞ ∞ ∞ ∞ fj (x, v)dvx dvy dvz vfj−∞ (x, −∞ v)dv−∞ x dvy dvz −∞ Zj e j + ∞ ∞ ∞ −∞ −∞ −∞ vfj (x, v)dvx dvy dvz ∂y ∂f ∂f ∂t =0 +– (v x–By − vy Bx ) 7 ∂f ∂f ∂t 2 ∂v 2 2 2 2 z+ (E + v 2 B ) = vx + vy + (vz + Vj ) vx + vy + (vz − x Vj )y z nj ∂t ∂vx (14 + exp − , fj0 = 3/2 3 exp − ∂g ∂g Suzuki&Shigeyama 2π vj vj2 + aζ = 0 vj2 (2009) ApJ ∂f 2.4. Simulation setups ∂t ∂ζ ∂f + (Ey − vx Bz ) = ∂t∆t]g(t, ∂vy o where nj , vj , and Vj are the number density, theζ thermal and the g(t + ∆t, − aζ δt) velocity, = T [ζ, ζ) bulk velocity As counter-streaming plasma that isneutrality homoge Plasmaの初期条件: species j. the We initial assumecondition, that they we are consider constantsa and ni = ne =∂f n0 for the charge ∂f ∆t ∆t ∆t ∆t ∆t ∆t f (t + ∆t,the x, v) =T [x, ]T [vas [v ,ev4= ]T0.05, = +,n(v B1, − ) z , ∆t] space; x , follows; x]T yx yB x[v In in our simulation, values of these parameters v v 4 ]T [y, 2 ]T [x, 4 are 4 ]T [vy 一様なconter-stream plasma 02 = i = ∂t ∂vz ∆t ∆t ∆t ∆t = 1 and ∆t 16. The ∆t 0.05 me /mi , and Ve = Vi = 0.2.2 The ratio is assumed to be]Tm i /me ]T × [v , ]T [v , ]T [v , [x, [y, ]T [x, 2 Tmass 2 2 2 2 x y x 4 Vj ) 2 4 vx + vy + (vz + v4x + vy∂g +4(vz −∂g Vj2) nj initial configuration field is + exp −5− expelectromagnetic − fj0 = 3/2 3of the + =0 , 2 2 aζ 2π vj vj ∂tvj ∂ζ = 10 φ = Ax = Ay = 0, Az = − sin g(t x sin+y,∆t, ζ − aζ δt) = T [ζ, ∆t]g (15 ne =number ni = 1 density, ve = 0.05 me /mi and Ve =the Vi bulk = 0.2veloc where nj , vj , and Vj are the thevthermal i = 0.05 velocity, ∆t ni =∆t ∆t ∆t species j. We assume that arex,constants ne]T=[x,n0∆tfor the charge neut 電磁場の初期条件 which is equivalent to f (tthey + ∆t, v) =T [x,and ]T [y, ]T [v , ]T [v , x y 4 2 4 4 2 In our simulation, the values of these parameters are as follows; n0 ∆t = 1, ve = ∆t ∆t 0.05, × T [vcos ]T y, [vy , B2 ]T [v [x x , x4 sin x , 4 ]T(16 E = E = E = 0, B = sin x cos y, B = − = 0, x i , and y x z e = 1 and 16 0.05 me /m Vez = Vi = 0.2. The mass ratio yis assumed to be mi /m initial configuration of the electromagnetic field −5 is = 10−5 where we have introduced a small parameter (= 10 ). In other words, we treat the above magnetic field as a perturbation toA the initial distribution of particles with no electromagnetic φ= Az = − sin x sin y, x = Ay = 0, field. Next, we address the boundary conditions. The simulation domain consists of the spatial given by whichintervals is equivalent to x, y ∈ [−π, π] and the velocity intervals given by vx , vy ∈ [−0.4, 0.4 and vz ∈ [−0.6, 0.6]. The periodic boundary condition is imposed in the x and y direction = Ez = Bx = sinfunction x cos y, assumed By = −tocos x sin for y, |vBx |,z |v =y0, x = Ey space, while in the E velocity the0,distribution vanish | > 0.4 and |vz | > 0.6. The number of zones in the physical space is 32 × 32 and that in the velocity −5 where we×have a small parameter (= 10 ). In other words, we treat the space is 40 40 ×introduced 60. in space; Conditions Result 初期条件は右図のような磁場 の擾乱を与える x,y方向には周期境界条件 Nx=Ny=32 Nu=Nv=40 Nw=60 Suzuki&Shigeyama (2009) ApJ Result 初期条件は右図のような磁場 の擾乱を与える x,y方向には周期境界条件 Nx=Ny=32 Nu=Nv=40 Nw=60 Suzuki&Shigeyama (2009) ApJ –8– –8– Result -6*157 ies j in each direction is defined by Suzuki&Shigeyama (2009) ApJ kinetic energy of species j in each direction is defined by ∞ ∞ ∞ π π mj vx2 fj dxdydvx dvy dvz ,π π ∞ ∞ (17) = ∞ mj 2 −π −π −∞ −∞ −∞ 2 v (17) K = jx x fj dxdydvx dvy dvz , π π ∞ ∞ ∞ 2 mj −π −π −∞ −∞ −∞ 2 エネルギー変化 = v fj dxdydvx dvmy dvz ,π π ∞ ∞ (18) ∞ j 2 −π −π −∞ −∞ −∞ y K 2 = v fj dxdydvx dvy dvz , (18) jy y π π ∞ ∞ ∞ 2 mj −π −π −∞ −∞ −∞ 線形成長を再現 vz2 fj dxdydvx dvmy dvz ,π π ∞ ∞ (19) = ∞ j 2 −π −π −∞ −∞ −∞ – 18 – x dvy dvz , Kjz = vz2 fj dxdydv (19) 2 −π −π −∞ −∞ −∞ the magnetic energies are defined by while the electric and the magnetic energies are defined by π π 1 π! π (Ex2 + Ey2 + Ez2 )dxdy, (20) Ee = 1 2 −π −π (Ex2 + Ey2 + Ez2 )dxdy, (20) Ee = π π 2 −π −π 1 2 2 2 π π Em = (Bx + By + Bz )dxdy. (21) 1 "&"! 2 2 −π −π Em = (Bx + By2 + Bz2 )dxdy. (21) 2 −π −π d Kjy evolve in the same way, because of the symmetry in the vx -vy "&"""! Thetwo values of Kthe Kjyphase evolveand in the the saturation same way, because of the symmetry in the vx -vy jx and ution is divided into phases, linear The time evolution is divided into two phases, phase, the electric plane. and magnetic energies increase exponentially. The the linear phase and the saturation phase. In the(Califano linear phase, electric and magnetic energies increase exponentially. The #% ent with a linearized analysis et al. the 1998). After !" the linear growth is consistent with a linearized analysisto(Califano et al. 1998). After the linear cts become significant and rate the magnetic energy becomes comparable )*+ phase, effectstakes become significant and the magnetic energy becomes comparable to gy of electrons, while thenon-linear electric energy relatively small values. #$ )*, !" the total kinetic energy of electrons, while the electric energy takes relatively small values. ween the two phases, Kex increases and Kez decreases. This is one of -.*/012/ In the transition between the two phases, Kex increases and Kez decreases. This is one of 3456*02/ es of the Weibel instability, the anisotropy of the motions is mediated #!" the remarkable features of the Weibel!"instability, the anisotropy of the motions is mediated en particles and electromagnetic fields. " '" !"" !'" ("" by interactions between particles and electromagnetic fields. 028* olution of the ion kinetic energy in each direction and the electric and From the time evolution of the ion kinetic energy in each direction and the electric and PIC simulation Particle-In-Cell : 粒子法の一種 →plasma業界ではスタンダードな手法 最近は2D,3Dの相対論的無衝突衝撃波の シミュレーションが流行っている ▷Silva et al (2003) ▷NIshikawa et al (2003) ▷Frederiksen et al (2004) ▷Kato (2007) ▷Spitkovsky (2007) itkovsky 密度 磁場 空間 PIC simulation Particle-In-Cell : 粒子法の一種 →plasma業界ではスタンダードな手法 最近は2D,3Dの相対論的無衝突衝撃波の シミュレーションが流行っている ▷Silva et al (2003) ▷NIshikawa et al (2003) ▷Frederiksen et al (2004) ▷Kato (2007) ▷Spitkovsky (2007) density through a transverse cut at z = 100, with a small inset showing the ion current 00 = 30δi , with the small inset now instead showing the electron current. The arrows 0 h e e 3 e l 2 J. Trier Frederiksen, C. B. Hededal, T. Haugbølle, Å. Nordlund Density distribution x方向 F IG . 2.— Electron (top) and ionz方向 (bottom) currents, averaged over the xdirection, at time t = 1200. Outline PART I : プラズマ天体物理の基礎 1.Introduction 2.Vlasov-Maxwell system 3.Plasma Instability 4.Wakefield Acceleration PART II : 最近の興味 1.Bulk comptonization 2.Supernova shock breakout 3.XRF080109/ SN 2008D Particle Acceleration 統計加速(Stochastic Acceleration) →衝撃波加速(Diffusive Shock Acceleration): 粒子がshock frontを往 復してエネルギーを得る -2 →energy spectrum N(ε) ε を再現可能 →但し、効率よくDSAを起こすには始めから高エネルギー粒子が必要 直接加速:電磁場のエネルギーを直接粒子に与える → surfing加速 → リコネクション加速 → wakefield加速 →ドリフト加速 ▷ DSAの seed particle を作れる Particle Acceleration 統計加速(Stochastic Acceleration) →衝撃波加速(Diffusive Shock Acceleration): 粒子がshock frontを往 復してエネルギーを得る -2 →energy spectrum N(ε) ε を再現可能 →但し、効率よくDSAを起こすには始めから高エネルギー粒子が必要 Berezhko&Voelk(2006) RXJ1713.7-3946 Particle Acceleration 統計加速(Stochastic Acceleration) →衝撃波加速(Diffusive Shock Acceleration): 粒子がshock frontを往 復してエネルギーを得る -2 →energy spectrum N(ε) ε を再現可能 →但し、効率よくDSAを起こすには始めから高エネルギー粒子が必要 Berezhko&Voelk(2006) RXJ1713.7-3946 DENSITY DENSITY 3HOCK FRONT 3HOCK FRONT XAXIS η. ∂ρ + ∇ · (ρu) = 0 etc ∂t XAXIS η. ^ . ∂f CR ∂f 1 ∂fCR + u· = ∇[κ∇] fCR + (∇ · u)p · ∂t ∂x 3 ∂p $IFFUSION COEFFICIENT Particle Acceleration 統計加速(Stochastic Acceleration) →衝撃波加速(Diffusive Shock Acceleration): 粒子がshock frontを往 復してエネルギーを得る -2 →energy spectrum N(ε) ε を再現可能 →但し、効率よくDSAを起こすには始めから高エネルギー粒子が必要 直接加速:電磁場のエネルギーを直接粒子に与える → surfing加速 → リコネクション加速 → wakefield加速 →ドリフト加速 ▷ DSAの seed particle を作れる Wakefield Acceleration 元々、レーザー物理業界で提案された加速機構 →Tajima & Dawson (1979) ultra-intense laserをplasmaへ照射することで電子が加速される →レーザーによる粒子加速器への応用 →Esarey et al. (1996), Mourou et al. (2006) 最近、天体物理への応用が考えられはじめた →Chen et al. (2002) : 宇宙線加速への応用を提案 →Lyubarsky (2006) : relativistic shockで実現されることを示す →Hoshino (2008) : 粒子法によるシミュレーション実験 Wakefield Acceleration ,RQ (\%] /LJKWSXOVH (OHFWURQ light pulseが通過 [D[LV radiation pressure (ponderomotive force) によって電子の空間分布が 変わる (\%] /LJKWSXOVH [D[LV (\%] /LJKWSXOVH ([ x方向に静電場が発生 [D[LV PIC simulation Particle-In-Cell : 粒子法の一種 →plasma業界ではスタンダードな手法 Hoshino (2008) : 相対論的無衝突衝撃波 (Γ=10)でwakefield加速が起こることを シミュレーションで示した dp p =q E+ B dt mγ · E = 4πρ ·B =0 1 B c t 1 E B= + 4πj c t E= : particle Simulation Vlasov eq. Maxwell eqs. 物理空間1次元,運動量空間2次 元(x,p,q)のVlasov-Maxwell system Vlasov eq.とMaxwell eqs.を 交互に時間発展させていく Source termsを介して粒子と 電磁場が相互作用する Source terms First, I divide the with of [xmin , xxmax ] × minphase max space min maxthe range min max p [pmin q , pmax ] × [qmin , qma has the volume ∆x∆p∆q. Thus, ∆x, ∆p, pmax − pand qmax − qmin xmax − xmin 5.2.1 discretization min ∆q are Thus, ∆x, ∆p, and ∆q are , which ∆p = has the volume , ∆q ∆x∆p∆q. = . (5.14) ∆x = cells each of N− N− pmaxthe pmin space qmax qminof [x p, x ]−×p[p , p ] × [q q , q −] into xmaxN−x xmin First, I divide p phase qrange x − x with the min max max min (5.14) max minmax max qmin min max min , ∆p = , ∆q = . ∆x = =∆x, ∆p, and ∆q, are∆q = Np∆x Nq, ∆p cells each of which has = the volume ∆x∆p∆q. Thus, at (x, p, q) = (xi ,N pjx, qk ), where Nx Np Nq Semi-Lagrange Scheme RATEGY INTEGRATION xmax − xmin at (x, p, q)FOR = (xxiNUMERICAL ,i p=j ,xqmin where k ), + ∆x(i − 1/2) for 1 ≤ i≤ , ∆x = Nx , 位相空間をmeshに区切る Its center is located at (x, p, q) = (xi , pj , qNkx), ∆p = where 33 pmax − pmin qmax − qmin ,(5.15a) ∆q = . Np Nq pxji = (5.15b) = pxmin +∆p(j ∆x(i− −1/2) 1/2) for for 11≤≤ji≤ ≤N Npx, , (5.15a) min + there exists a reliable scheme for the integration equations, the Buneman-Boris method [10]. This Its center is located at (x,ofp,these q)x= (x , pmin ), where ix j , qk+ = ∆x(i − 1/2) for 1 ≤ i ≤ N , i x = for 11≤≤ kj ≤≤NNqp. ,of motion of a relativistic particle (5.15c) = qpmin +∆q(k ∆p(j − − 1/2) for the (5.15b) min + is widelyあるcell(i,j,k)の中にある粒子 used inqpkjPIC simulations to1/2) integrate equation equivalent to x = x + ∆x(i − 1/2) for 1 ≤ i ≤ N , i min x p≤ 1 ≤ j ≤ Np , j = qk = + ∆q(k 1/2) 1 ≤t kas, Nqp. min + ∆p(j − 1/2) for (5.15c) number (5.22).of数,エネルギーを定義 particles of qamin species s in−the cell for at time pj = pmin + ∆p(j − 1/2) for 1 ≤ j ≤ Np , rst, using the Buneman-Boris method, one obtains the orbit of a+particle located the center q = qmin ∆q(k − 1/2) atfor 1 ≤ kof≤each Nq . cell xi +∆x/2 +∆q/2 k j +∆p/2 umber of sparticles of a species s pin the cell atqktime t as, = qmin +of∆q(k − 1/2) for 1 ≤ ≤ Ncalculated s qklocation q. Iijk define the ∆tk are (t) =the coordinates dx (Xi , Pj , Q dpk ) to specify dqf (x, p, q, t), the particle at t +(5.16) k ) at t.N pnumber i +∆x/2 j +∆p/2 k +∆q/2 Next,xixI−∆x/2 define the ofqkq−∆q/2 particles ofs aofspecies cellatattime time −∆p/2 Next, Ipjdefine the number of particles a speciess sin in the the cell t as,t as, s Nijk (t) = dx dp dqf (x, p, q, t), (5.16) xi +∆x/2 +∆p/2 qk +∆q/2 xi +∆x/2 pjpj+∆p/2 qk +∆q/2 articles contained in the cell at t; xi −∆x/2 pj −∆p/2 qk −∆q/2 t+∆t t+∆t t+∆t s s s q N (t) = s q, t), p p dx dp dqf (x, p, ijk s ⊥ s ⊥ ⊥ N (t) = dx dp dqf (x, p, q, t) q +∆q/2 p +∆p/2 x +∆x/2 j i the kijk B dt, P = p + R E + dt, Q = q + R E − B dt. (5.23) articles contained in cell at t; i+ j j k k x −∆x/2 p −∆p/2 q −∆q/2 q q i j k s Γs qk −∆q/2 Γs dqΓsxfis−∆x/2 Γs (x, p, q, t). ptj −∆p/2 (5.17) dp dx t = t Eijk (t) +∆p/2 jenergy i +∆x/2and the pjp−∆p/2 xix−∆x/2 of particles contained in the cell at t; k +∆q/2 qkq−∆q/2 s s s and the energy of particles contained in cell at t;pj +∆p/2 dqΓ f the (x, p, q, t). (5.17) dp dx (t) = ssume Ethat the other particles in qk +∆q/2 xi +∆x/2 ijk I discretize the electromagnetic them only at the positions xi , s qk −∆q/2 pjfields −∆p/2by defining xi −∆x/2 dqΓs f s (x, p, q, t). Eijk (t) x =i +∆x/2 dx pj +∆p/2 dp qk +∆q/2 e cell move with the same velocp,q p,q qk −∆q/2 pj −∆p/2 x⊥i −∆x/2 s s s ⊥ fields ⊥ ⊥ Ie particle discretize the electromagnetic by defining them only at the positions x , Ei having (t) = Ebeen (xi , located t), Ei at (t) = E (xE , t), B (t) = B (x , t). (5.18) dqΓ f (x, p, q, t dp dx (t) = i i ijk i i On the other hand, I discretize the electromagnetic fields by defining them 2only at the positio qk1−∆q/2 pj −∆p/2 xi −∆x/2 er, which is a good approxima⊥ ⊥ ⊥ ⊥ present aEimethod defined by equations (5.16)(t) = Eto(xcalculate Eithe (t)time = E evolution (xi , t), of Bithe (t)quantities = B (xi , t). (5.18) i , t), ⊥ ⊥ sufficiently small cell. The intuEi 1(t) = 2E (x3i , t), Ei (t) = Eby (xidefining , t), Bi⊥ (t) = B ⊥only (x3i , t). On the other hand, I discretize the electromagnetic fields them at the lanation the scheme is shown present a for method to calculate the time evolution of the quantities defined by equations (5.16)Suzuki&Shigeyama 4 5 In the following, I present a method to calculate the time evolution of the quantities ⊥ ⊥ ⊥ ⊥defined 6 5 4 e 5.1. In each panel, the hori(2010a) J.Comp.Phys. Ei (t) = E (xi , t), Ei (t) = E (xi , t), Bi (t) = B (xi , t) (5.18). 7 xis represents the x-axis and the 6 7 to8calculate 9 In the following, I present a method the time evolution of the quantities d axis represents the p- and q-axes. 9 8 h I draw the (5.18). phase space as two onal, actual calculations are prein the three dimensional phase , p, q). The procedure to calcux x number of particles in the cell 5.2. STRATEGY FOR NUMERICAL INTEGRATION there exists a reliable scheme for the integration of these equations Advection because part method is widely used in PIC simulations to integrate the equation of motio Semi-Lagrange Scheme 5.2.3 FOR NUMERICAL INTEGRATION 33the Buneman-Bori because there exists a reliable scheme for the integration of these equations, equation (5.22). For the integration of the advection part, I make use of the characteristics of the Vlasov equa first, using to theintegrate Buneman-Boris method,ofone obtains orbit of a pp method is widely used in PICAt simulations the equation motion of the a relativistic RATEGY FOR NUMERICAL INTEGRATION (xdx q method pthe33 at t.dp I defines the coordinates Pj , QkThis )sto specify location ⊥ (Xi ,dq ⊥ ⊥ i , pj , qkp) the equation (5.22). a reliable scheme for the integration of these equations, Buneman-Boris [10]. = , = R E + B , = R E − B , q q cellの中心の粒子の軌跡を計算 s s s as, dt Γ dt Γ dt Γ At first, the using the Buneman-Boris one obtains the equivalent orbit of a particle located at th ed in PIC simulations to integrate equation of motion ofmethod, a relativistic particle to (xi , pjfor , qk )the at t. I define theofcoordinates (Xi , Pj the , Qk )Buneman-Boris to specifyt+∆t the location of [10]. the particle する(t → t+Δt) there exists a reliable scheme integration these equations, method This at t t+∆t p q s ⊥ X dt, P = p + R E + B dt, toQk = q as, i = xi + of motion j j is widely used in PIC simulations to integrate the equation of a relativistic particle equivalent q s s he Buneman-Boris method, one obtains the orbit of a particle located at the center of each cell Γ Γ ←Buneman-Boris法 t t nefine (5.22). the coordinates (Xi , Pj , Qk ) to specify of the particle at t + are calculated t+∆t t+∆t t+∆t p the location q ∆t I then assume that the other particles in s ⊥ s ⊥ rst, using the Buneman-Boris one obtains the orbit of a particle located at the center of each cell Xi =method, xi + dt, P = p + R E + B dt, Q = q + R E j j k k q q s s velocthe same cell move with the same Γ Γ cellの中にN ijk (t)個の粒子が一 t t t k ) at t. I define the coordinates (Xi , Pj , Qk ) to specify the location of the particle at t + ∆t are calculated ity as the particle having been located at t+∆t t+∆t p q that p ⊥ 様に分布し、中心の粒子と同 I then assume in is a good the particles center, which approximas ⊥ the other s ⊥ dt, Pj = pj + Rq E + s B dt, Qk = qk + Rq E − s B dt. (5.23) tion for sufficiently small cell. TheΓintuthe same cell move with the same velocΓs Γ t t p,q p,q t+∆t t+∆t t+∆t じ軌跡で運動すると近似 p q p itive⊥explanation the scheme is shown ity+ as the particle located at for s having been s ⊥ ⊥ dt, P = p R E + B dt, Q = q + R E − B dt. (5.23) i+ j j k k q q s sin Figure s 5.1. In each panel, the hori1 the center, which is a good approximathe other particles in Γ Γ Γ t t t zontalThe axisinturepresents the x-axis and the 2 ijk(t+Δt)とする tion for sufficiently small cell. with thecell中の粒子全体が移動した結果、cellに入ってきた粒子数を数えてN same veloc- p,q 1 3 p,q vertical axis represents the pand q-axes. ssume that located the other in itive explanation for the scheme is shown aving been at particles Although I draw the phase space as two 6 4 2 5 es cell move with the same velocin Figure 5.1. In each panel, the hori1 a good approximap,q p,q are predimensional, actual calculations E ijk (t)も同様に時間 zontal axis represents the x-axis and the esmall particle been located at cell.having The intuin the three dimensional phase 3 2 formed 1 3 7 81 9 2 vertical axis represents the pand q-axes. is is a shown good approximaspace (x, p, q). The procedure to calcu発展させる rer, thewhich scheme 4 5 Although I draw the phase space as two sufficiently small cell. The intulate the number of particles in the cell 3 2 3 61 5 each panel, the hori- dimensional, actual4 calculations pre- at the center of the sur(cell 5) are located lanation for the scheme is shown Suzuki&Shigeyama 4 5 7 ts the x-axis and the formed in the three dimensional 6 phase rounding cells at t + ∆t is as follows; (1) 6 5 e 5.1. In and each panel, the hori7 8 94 (2010a) J.Comp.Phys. nts the pq-axes. Figure 95.1: Schematic views of calculate the orbit of a particle located space (x, p, q). The procedure to calcu7 8 xis represents the x-axis and the x6 e phase space as two late the number of particles at the center of each cell (the left panel) in 7 the8 cell 9 axis representsare theprep- and q-axes. usingofthe method. (2) 9 calculations (cell 5) located at the center theBuneman-Boris sur8 he Idimensional draw the phase spacerounding as two cells at t + ∆t is count the number phase as follows; (1) of particles which enter the original position of cell 5 und bution of particles inside each In other words, thethe number of particles onal, actual calculations are pre- the orbit of a particle Figure 5.1:cell. Schematic views of integration of t located procedure to calcu- calculate particles located in the gray zones in the right panel of Figure 5.1. Therefor x x inparticles the three dimensional phase at the center of each cell (the left panel) in the cell Ap becomes ,he p, center q). The procedure to calcuof the sur- using the Buneman-Boris method. (2) x x j+1 number of particles in the cell i+1 k+1the assumption count the number of particles which enter the original position of cell 5 under + ∆t is as follows; (1) |Xi − s s The of L.H.S this equation thethe advection the rest andas kinetic energy ofbetween particlesthe alo the of Vlasov equationrepresents (5.6), while R.H.S isofinterpreted the exchange of the Vlasov equation (5.6), energy. while the R.H.S is interpreted as the exchange between the kine and the where electromagnetic and theOn electromagnetic energy. s )2 + p2 + q 2 . the other hand, introducing the following variables, Γs = (Rm On the other hand, introducing the following variables, ⊥ ⊥ ⊥ ⊥ E (x) − B (x) E (x) + B (x) s s ⊥ ⊥ ⊥ ⊥ Here Rm and Rq are dimensionless constants defined by , H(x) = , G(x)E= E (x) − B (x) (x) + B (x) 2 , H(x) = 2 , G(x) = Transverse成分に関しては、 2 2 ⊥ qs ⊥ m s one can rewrite the Maxwell equations for the perpendicular components E and B as s s G(x,t),H(x,t)という関数を定義 ⊥ ⊥ , R = , R = q m one can rewrite the Maxwell equations for the perpendicular components E and B as m ⊥ ⊥ e e ∂G ∂G ⊥ J ∂H ∂H ⊥ J + = − , − . ∂G ∂G J ∂H ∂H J= − ∂t = ∂x− Maxwell + , 2 equations −∂t =∂x− .to2the followin すると、source termがある respectively. On the other hand, the lead ∂t ∂x 2 ∂t ∂x 2 In the following, I integrate theINTEGRATION above equations instead of the equations for the compon 5.2.InSTRATEGY FOR NUMERICAL 線形移流方程式になるので、 the following, I integrate the above equations instead of∂E the ⊥ equations ∂E ∂B ⊥ for the components ∂B ⊥ Maxwell eqs. + ⊥ s ∂t ∂t ∂x ∂t where the dimensionless electric for current densities J andintegration J are expressed in terms of f (x, p, q, t) a 5.2 Strategy numerical これを解けばよい 5.2 = −J , + Strategy for numerical integration ∞ ∞ p = −J ⊥ , s = Rqs numerical integration f (x, p, q, t)dpdq, In this section, I describeJa method for of the dimensionless Vla s Γ −∞ −∞ In this section, I describe a method fors numerical integration of the dimensionless Vlasov-M (5.11) introduced in the previous section. ∞ ∞ (5.11) introduced in the previous section. s q s ⊥ J = Rq f (x, p, q, t)dpdq. s −∞ −∞ Γ s 5.2.1 discretization 5.2.1 discretization These two relations close the system. First, I divide the phase space with the range of [xmin , xmax ] × [pmin , pmax ] × [qmin , qmax First, I divide the phase space with the range of [xmin , xmax ] × [pmin , pmax ] × [qmin , qmax ] into cells each of which has the volume ∆x∆p∆q. Thus, ∆x, ∆p, and ∆q are cells of which has the of volume ∆x∆p∆q. Thus, ∆x, ∆p, and ∆q are 5.1.3 each Transformation equations Suzuki&Shigeyama pmax − pmin qmax − qmin xmax − xmin p − p q x − x , ∆p = , ∆q = . ∆x = max min max − qmin max I transform min (2010a) J.Comp.Phys. For convenience of the following the equations introduced above. , ∆p = , ∆q = . ∆xsections, = Nx Np Nq s N N N x some algebraic manipulations p q Multiplying equation (5.6) by Γ (p, q) and lead to the following eq Its center is located at (x, p, q) = (xi , pj , qk ), where s s s s s s Its center ), where ∂(Γ f ) isplocated f ) p ∂(Γ f ) ∂(Γs f s )at (x,sp, q) = (xq i , p⊥j , qk∂(Γ s s pE + qE ⊥ ⊥ + s + Rq E + s B xi = xmin + + ∆x(i Rq E− 1/2) − s Bfor 1 ≤ i ≤ = NR ,q ∂t Γ ∂x Γxi = xmin∂p Γ ∂q Γs + ∆x(i − 1/2) for 1 ≤ i ≤ Nx , x pj = pof +rest ∆p(j −kinetic 1/2) energy for 1 of ≤ particles j ≤ Np , along the min The L.H.S of this equation represents thepadvection the and = p + ∆p(j − 1/2) for 1 ≤ j ≤ N j min p, q + ∆q(k − 1/2) for between 1 ≤ k ≤the N kinetic . of the Vlasov equation (5.6), while the R.H.Sqkis = interpreted as the exchange ener qk = qmin +min ∆q(k − 1/2) for 1 ≤ k ≤ Nq . q and the electromagnetic energy. Next, I define the number of particles of a species s in the cell at time t as, Next, definehand, the number of particles of a species s in the cell at time t as, On theI other introducing the following variables, Simulation Setup 初期条件 ▷plasmaは静止している ▷thermal dispersionも無い ▷電磁場も存在しない Initial condition Boundary condition 境界条件 ▷電磁パルスを入射させる (\%] /LJKWSXOVH ,RQ (OHFWURQ [D[LV Energy spectrum 位相空間(x,p,q)の運動量の角 度依存性と空間依存性を積分 Lorentz factorに対する粒子 数 Power-law成分が現れる (index -2) 前半のまとめ 無衝突プラズマの基礎 Vlasov-Maxwell方程式系: 位相空間中でのプラズマのダイナミクス 但し、定性的な振る舞いは荷電粒子の運動で理解できる two-stream instability, Weibel instability, wakefield加速 非熱的放射の起源 粒子加速 衝撃波のbulk kinetic energy →高エネルギー粒子 (Fermi加速など) →非熱的放射 (synchrotron, 逆コンプトン) ここまでの話 (無衝突プラズマ) 光子ープラズマ相互作用 衝撃波のbulk kinetic energy →非熱的放射 (bulk comptonization) ここからの話 (衝突プラズマ,流体) Outline PART I : プラズマ天体物理の基礎 1.Introduction 2.Vlasov-Maxwell system 3.Plasma Instability 4.Wakefield Acceleration PART II : 最近の興味 1.XRF080109/ SN 2008D 2.Supernova shock breakout 3.Bulk comptonization XRF 080109/SN 2008D 渦巻き銀河NGC 2770に出現 したIb/c型超新星 Swiftが超新星の誕生の瞬間に 付随していると思われるX線 放射を観測 X-ray spectrumは single power-law/powerlaw+black bodyでfitできる →photon index Γ -2.3 →Tph 0.1keV Soderberg+(2008) XRF 080109/SN 2008D VLBIでの電波観測で、ejecta を空間分解 → ejecta velocity < 0.75c 250 4 200 MilliARC SEC 2 20 98bw (broad Ic) 04gq (Ib) 15 02ap (broad Ic) 10 08D (Ib) 5 100 05kl (Ic) 50 -4 0 5 10 15 Bietenholtz et al.(2008) -6 6 4 2 0 MilliARC SEC -2 -4 -6 -1 Doppler velocity (10 km s 0 60o o 90o 3 -2 10 30o 5 03jd (broad Ic) 0 -15 -10 -5 15 70 150 0 [O I] 6300 Model BP8 0o Normalized flux + const 6 20 Normalized flux + const nebular phaseの可視光観測 でdouble-peaked [OI] を発 見 → side-viewed bipolar flow [O I] 6300 0 -15 -10 -5 0 5 10 15 Doppler velocity (103 km s-1) Tanaka et al.(2009) Outline PART I : プラズマ天体物理の基礎 1.Introduction 2.Vlasov-Maxwell system 3.Plasma Instability 4.Wakefield Acceleration PART II : 最近の興味 1.XRF080109/ SN 2008D 2.Supernova shock breakout 3.Bulk comptonization 重力崩壊型超新星 *VYLJVSSHWZL Fe massive stars(M>8-10M◉ )の 進化の最終段階 Fe coreの光分解で、星の内部 に衝撃波が発生 *VYLIV\UJL ⁵⁶Fe+γ→13⁴He+4n ⁴He+γ→2p+2n p+e-→ν+n e :OVJRWYVWHNH[PVU :OVJRIYLHRV\[ 衝撃波が星の外層を突き抜ける ことで、ejectaを放出 但し、重力崩壊から衝撃波の発 生と伝播まではよく分かってい ない ρc =3 10¹⁴[g/c.c.] :5L_WSVZPVU UV/X-ray flash post shock ∼0.1keV Optical Shock Breakout 超新星爆発において、星のcore 付近で発生した衝撃波がその星 の外層をつき抜ける現象 重力崩壊型超新星では、星の外 層を伝搬する衝撃波は radiation-mediated shock →衝撃波の前方のoptical depthがτ c/Vsとなるときに shockからphotonがもれだす つまり、shock breakout以降 に超新星は観測可能になる GHQVLW\ 9V τ [ HOHFWURQ SKRWRQ photon diffusion velocity Vdiff=c/τ radiation temperature Tr∼106K SNLS-04D2DC Supernova Legacy Survey GALEX衛星によってUV flashが検出され、その後超新 星を観測 Schawinski+(2008) Outline PART I : プラズマ天体物理の基礎 1.Introduction 2.Vlasov-Maxwell system 3.Plasma Instability 4.Wakefield Acceleration PART II : 最近の興味 1.XRF080109/ SN 2008D 2.Supernova shock breakout 3.Bulk comptonization Comptonization photonが電子に散乱されるこ とでspectrumが歪む thermal compton=SZ効果 Kν bulk compton (Blandford&Payne 1981) →電子の、圧縮のある流れがあ るときに起こる comptonization(e.g. 衝撃波, 降着流) Kν HOHFWURQ SKRWRQ 速度大 速度小 Kν Kν HOHFWURQ SKRWRQ Comptonization GHQVLW\ Fermi加速とのアナロジー shock front付近での散乱: → エネルギーA倍 (A>1) shock frontからの脱出確率: → 1-P Pはoptical depthから決まる (OHFWURQ /RJ1( [ 1 31 31 31 31 31 ($($($($($( (QHUJ\( Comptonization GHQVLW\ Fermi加速とのアナロジー shock front付近での散乱: → エネルギーA倍 (A>1) shock frontからの脱出確率: → 1-P (OHFWURQ /RJ1( Pはoptical depthから決まる [ 1 31 31 31 31 31 本研究の狙い Shock breakoutでのbulk comptonization でSN 2008Dのnon-thermal emissionを説 明するにはどんなパラメータが必要か? ($($($($($( (QHUJ\( Shock profile GHQVLW\ ejecta中のphotonの伝播を計 算するには、scattering source(電子)の速度,密度が必要 →shock profile 8 N[ L ρ=k x A plane-parallel Sakurai (1960) : 星の外層を shockが通過するときの自己相 似解(α=3: radiative envelope) atmosphere [ !& ) !" '%"& & ) !'%"& 012345-6%7489:; /0123,4'567+7+8 ,-.(+! ,-.%+& ,-.$+! ,-.#+$ !% !" !$ !" !# !" !" %'!" !" &'!" !" ('!" !" )'!" !" *'!" !! !'!" /32,9170':;<=',>0'2?;:970'57=8 !+!'!" !! ) !$%"& ) !*%"& ) !(%"& "& !"%"& !"#'%"& "& !"#$%"& "& -.!,#" -.!+#* -.!$#" -.!/#$ "& +%"& "& *%"& "& ,%"& "& (%"& "& )%"& "" "%"& <5:-=>41%?@38%-A1%:B@?=41%748; "#"%"& "" Photon propagation monte-carlo法でphotonの伝 播を解く 各タイムステップごとにshock front からseed photonを入射 させる density profileからoptical depthを計算 ←Thomson断面積を仮定 GHQVLW\ cΔt [ scattering probability: 1-exp(-neσcΔt) 散乱される場合は、散乱する電 子の速度をvelocity profileか ら決めて、photonの散乱後の エネルギーと散乱角を計算する スペクトル GHQVLW\ LQLWLDO shock profileのパラメータ: Vi=0.3c, 11 Xi=10 [cm] ILQDO 9L 9I shock breakoutが起こる瞬 間から計算を開始する →τ=c/Vi → 1 [L !& ) !" '%"& & ) !'%"& 012345-6%7489:; /0123,4'567+7+8 ,-.(+! ,-.%+& ,-.$+! ,-.#+$ !% !" !$ !" !# !" !" %'!" [ !" &'!" !" ('!" !" )'!" !" *'!" !! !'!" /32,9170':;<=',>0'2?;:970'57=8 !+!'!" !! ) !$%"& ) !*%"& ) !(%"& "& !"%"& !"#'%"& "& !"#$%"& "& -.!,#" -.!+#* -.!$#" -.!/#$ "& +%"& "& *%"& "& ,%"& "& (%"& "& )%"& "" "%"& <5:-=>41%?@38%-A1%:B@?=41%748; "#"%"& "" スペクトル GHQVLW\ seed photonは0.1keVの black bodyで衝撃波面から入 射させる LQLWLDO ILQDO 9L 9I 高エネルギー側にpower-law tail: Γ -2.4 7(8+&5/09/3:0*0;'/<,"("= #!!! [L %&'()* +),-./+012 304&56),4 #!! #! # !"# !"!# #! #!! #!!! 3:0*0;/&;&5>2/<&?= $ #! [ 衝撃波速度への依存性 衝撃波速度を変えて計算 赤: Vi=0.1c 青: Vi=0.2c 緑: Vi=0.3c 黒: Vi=0.4c non-thermal tailが顕著になる には、衝撃波速度 Vs>0.3cが必 要 但し、Vs>0.3cではindexはほ とんど変わらずΓ -2 後半のまとめ XRF 080109/SN 2008DのX線 観測で得られたphoton indexを 再現(Vs>0.3c) 7(8+&5/09/3:0*0;'/<,"("= SN shock breakoutにbulk comptonizationを考慮すること でnon-thermal tailが作れる #!!! #!! #! # !"# !"!# #! 13 R=10 [cm]を仮定することで、 energeticsとduration( 500s)を 説明できる %&'()* +),-./+012 304&56),4 #!! #!!! 3:0*0;/&;&5>2/<&?= $ #! 非熱的放射の起源 粒子加速 衝撃波のbulk kinetic energy Suzuki&Shigeyama (2008) Phys.Plasmas Suzuki (2008) Phys.Plasmas Suzuki&Shigeyama (2009) ApJ Suzuki&Shigeyama (2010a) J.Comp.Phys. →高エネルギー粒子 (Fermi加速など) →非熱的放射 (synchrotron, 逆コンプトン) 光子ープラズマ相互作用 前半の話 (無衝突プラズマ) 後半の話 衝撃波のbulk kinetic energy (衝突プラズマ,流体) →非熱的放射 (bulk comptonization) Suzuki&Shigeyama (2010b) ApJ submitted
© Copyright 2024 ExpyDoc