シアニン色素の 多光子退色反応機構の解明 神戸大学 冬木正紀、和田昭英 Cyanine dye Photosensitive pigment Intensive studies for a century ! Geometric structure ! Electronic structure Absorbance 4 S1←S0 3 2 1 ICG (indocyanine green) 0 500 600 700 800 Wavelength / nm Low quantum yield of photoreaction from S1: ~10-5 900 [Gratz et al. (1999)] photodetector for specific cancers [Sugie et al. (2010)] Multiphoton reactions under fs irradiation leuco-form Transient absorption CH3 CH3 Pump pulse: 800 nm, 70 fs, 40 mJ/cm2 Pump-probe delay: 2.5 ns CH3 CH3 + N pump N saturation of C=C bonds SO3Na SO3Na [Holzer et al. (1998)] 0.0 SO3Na -0.3 A N CH3 -0.6 CH3 CH3 CH3 + N [M. Fuyuki et al. (2013(1))] -0.9 500 600 700 800 Wavelength / nm 900 SO3Na cis-isomer ioni -zation NIR pump fluence dependence 0.1 A 0.01 leuco-form slope = 2.9 (560 nm) cisisomer (new) 1E-3 1E-4 cis-isomer slope = 3.9 (890 nm) leucoform (new) [M. Fuyuki et al. (2013(1))] 1E-5 1 10 2 NIR fluence / mJ / cm one-photon process: buried in multiphoton process 60 conve ntional [9] Quantum yield: higher electronic state >> S1 Today’s topic: Reaction dynamics of photodegradation conve ntional [9] Experimental setup(transient absorption) water flow cell f=100 mm probe pulse (white light continuum) f=150 mm delay stage regenerative amplifier 800 nm 70 fs 1 mJ 1 KHz f=250 mm pump pulse chopper sample f=500 mm wave plate (magic angle) PC monochoromator Lock-in amplifier photomultiplier tube Cyanine dye in ethanol: 0.6 mM Thickness of jet: 0.2 mm Spot size: pump 0.2 mm probe 0.1 mm Probe pulse Sample jet [Fuyuki et al. 2010, 2011, 2013] Transient absorption spectra 1 pump – 1 probe measurement NIR pump fluence = 50 mJ/cm2 Excited state absorption (ESA) [Meyer et al. (1998)] 0.5 0.0 A -0.5 -1.0 -1.5 -2.0 -2.5 Probe Delay 0.0 ns 0.5 ns 1.0 ns 1.5 ns 2.0 ns 2.5 ns 500 600 700 800 Wavelength / nm ESA S2 S1 PB 900 Photo-bleaching (PB) of trans-isomer [Philip et al. (1996)] S0 0.46 ns trans isomer [Ashworth et al. (1996) ] NIR pump fluence dependence 1 -1 10 slope = 2.0 -2 |A| 10 -3 10 slope= 3.0 photobleaching leuco forms cis isomers -4 10 -5 10 1 slope = 3.9 10 2 NIR fluence / mJ / cm 50 Main photodegraded species were ICG fragments. Photoproducts vs photobleaching Ratio of |A| 0.09 0.06 3 photon leuco forms vs photobleaching cis isomers vs photobleaching 0.03 4 photon 0.00 0 10 20 30 2 NIR fluence / mJ / cm 40 Optical order of photodegradation changed from 2 to 4. Steady state spectra Absorbance 3 2 NIR irradiation time 00 sec 20 sec 40 sec 80 sec Pump pulse: fs NIR pulse (800 nm, 70 fs, 10 mJ/cm2, 1 KHz) 1 0 400 500 600 700 800 Wavelength / nm 900 ICG fragment cleavage of carbon double bonding chain Multiphoton reaction paths of ICG/ethanol [Fuyuki et al. (2010-2013), Ashworth et al. (1996), Gratz et al. (1999) ] Temporal profile of photobleaching 1.2 Experiment Model decay 1 (485 ps) decay 2 (14 ps) decay 3 (1.4 ps) -A (785 nm) 0.9 0.6 0.3 0.0 0 500 1000 1500 Pump-probe delay / ps 2000 1.2 Experiment Model decay 1 (485 ps) decay 2 (14 ps) decay 3 (1.4 ps) -A (785 nm) 0.9 0.6 0.3 0.0 0 10 20 30 40 Pump-probe delay / ps 50 The profile includes 3 exponential decay components. Assignment Decay components 1 and 3 correspond to relaxations in trans singlet system. 14ps time constant corresponds to photofragmentation. Assignment Decay components 1 and 3 correspond to relaxations in trans singlet system. 14ps time constant corresponds to photofragmentation. Conclusions fs超短パルス照射下におけるICGの退色反応ダイナミクスを 時間分解過渡吸収測定により研究した。 (1) 10 mJ/cm2以下のNIRパルス照射下では、 光退色物質の量はパルス強度の2乗に比例した。 (2) 10 mJ/cm2以上の強度領域では、強度の増加に伴い、 光退色物質に対するロイコ体の量比は減少したが、 シス体の生成量比はほぼ一定であった。 (3) パルス強度の増加に伴い、光分解を引き起こすNIR多光子励起の光子数が. 2から4へと増加したことを示唆している。 (4) 主な光退色物質は炭素共役鎖が切断されたフラグメントである。 (5) 光ブリーチングの時間プロファイルは3つの指数減衰成分の和により再現された。 (6) 14 psの成分が多光子励起光分解反応ダイナミクスを反映していると同定した。 Acknowledgement Special thanks to members of Molecular Photoscience Research Center in KOBE university. M. Fuyuki A. Wada Prof. Keisuke Tominaga Prof. Seiji Akimoto Prof. Hiroshi Onishi This work was financially supported by a Grant-in-Aid for Scientific Research (B) (Grant No. 21 350 013) from Japan Society for the Promotion of Science (JSPS).
© Copyright 2024 ExpyDoc