微分積分II

様式 A
微分積分Ⅱ(有本/吉田/山中)
科目にかかわる情報
科目の
基本
情報
教員に
授業科目
微分積分 Ⅱ
(欧文)
Differential and Integral Ⅱ
一般・専門の別・
一般・自然科学系基礎・
学習の分野
共通
対象学生
3年全学科
担当教員・所属
かかわ
る情報
有本 茂・一般科目(理)
,吉田
単位
授業形態・学期
4
講義・通年
必修・履修・
履修選択・選択の別
必修
英治・一般科目(理)
,
山中 聡・非常勤
有本(内線:8187)
,吉田(内線:8182),
研究室等の連絡先
山中:友朋会館1階,非常勤講師室
(内線:8592)
:管理・一般科目棟3階,{arimoto,yoshida }@tsuyama-ct.ac.jp
基礎となる学問分野
数物系科学/数学/基礎解析学
学科学習目標との関
本科目は一般科目学習目標「(1)実践的技術と工学の基礎を学び、深く
連
専門の学芸・技術を身につける。」に相当する科目である。
本科目が主体とする学習・教育到達目標は「
(A)技術に関する基礎知
科目の
技術者教育
識の深化,A-1:工学に関する基礎知識として,自然科学の幅広い分
プログラムとの関連
野の知識を修得し,説明できること」である。本科目は大学担当の内容
学習・
を含む科目で、技術者教育プログラムの履修認定に関係する。
教育内
容にか
級数の概念と関数のべき級数展開を理解することからはじめる。次に
授業の概要
かわる
2年生で学んだ1変数関数の微分・積分を発展させ,2変数関数の微分
(偏微分)
,及び2変数関数の積分(重積分)について学ぶ。
情報
学習目的
工学の基礎的な問題を解決するために必要な数学の知識,計算技術を
級数,2変数関数の微分,積分を学ぶことにより習得する。
1.いろいろな関数をべき級数に展開できる。
到達目標
2.偏微分の概念を理解し,基本的な2変数関数の極値や曲面の接平面
の方程式を求めることができる。
3.重積分の概念を理解し,基本的な立体の体積を求めることができる。
本科目は「授業時間外の学習を必修とする科目」である。1単位あた
履修上の注意
り授業時間として15単位時間開講するが,これ以外に30単位時間の
学習が必修となる。また,欠課時間数が所定授業時間数の1/3以下でな
ければならない。これらについては担当教員の指示に従うこと。
履修のアドバイス
必要に応じて復習しながら授業を進めるが,2年生までの数学(特に
微分,積分)をその都度復習しておくこと。
基礎科目
基礎数学Ⅰ,Ⅱ(1年)
,基礎線形代数(2),微分積分Ⅰ(2)
関連科目
応用数学Ⅰ,Ⅱ(4年)
,数学続論(4)
,数学特論(5)
様式 B
微分積分Ⅱ(有本/吉田/山中)
授業にかかわる情報
板書を中心に授業を進め厳密な理論の追求に偏することなく,内容の理解を重
授業の方法
視する。また,その理解をより深めるために演習の時間をなるべく多く持つ。
開講週
1―5週

授業時間内の学習内容〔項目〕
授業時間外の学習内容〔項目〕
(指示事項)
(指示事項)
前期ガイダンス,関数の多項式に
よる近似,数列の極限,級数,べ
き級数とマクローリン展開
6・7週

演習偏微分法(1)
,偏微分法(2)
レ ポ ー ト 課 題 (1) 「 関 数 の 多 項 式 に
よる近似」
レ ポ ー ト 課 題 (2) 「 関 数 の テ ー ラ ー
展開、マクローリン展開」
〔接平面〕
8週
(前期中間試験)
前
9週

中間試験の返却と解説
期
10―14週

偏微分法(3)
〔合成関数の微分法〕

偏微分の応用(1)
〔高次偏導関数,
レ ポ ー ト 課 題 (3) 「 極 大 ・ 極 小 値 問
題」
多項式による近似,極大・極小〕
授
(2)
〔陰関数の微分法,条件付き極値
業
問題〕
(3)
〔包絡線〕
計
レ ポ ー ト 課 題 (4)「 陰関数の微分法,
条件付き極値問題」
(前期末試験)
画
15週
前期末試験の返却と解説
16週

,後期ガイダンス,2重積分(1)
〔2重積分の定義〕
後
期
17-19週

2重積分(2)
〔2重積分の計算〕
20-22週

変数の変換と重積分(1)
23週
(後期中間試験)
24週

中間試験の返却と解説
25-30週

変数の変換と重積分(2) 「到
達度試験」
(1月)
(学年末試験)
レ ポ ー ト 課 題 (5)「 2 重 積 分 」
レ ポ ー ト 課 題 (6) 「 極 座 標 に よ る 2
重積分」
広義積分
レ ポ ー ト 課 題 (7) 「 変 数 の 変 換 と 重
積分」
レ ポ ー ト 課 題 (8)「 広 義 2 重 積 分 」
注意:レ ポ ー ト 課 題 (1)~ (8)の 詳 細
は、各指導教官の指示に従うこと。
教科書,教材等
教科書:斎藤
他著
新 微分積分Ⅱ(大日本図書)
問題集:斎藤
他著
新 微分積分Ⅱ問題集(大日本図書)
4回の定期試験(同等に評価し70%)とその他の試験,演習,レポート,授業への取り
成績評価方法
組み方など(30%)の合計で評価する。成績等によっては,再試験を行う(レポート課題を課
す)こともある。再試験は80点を上限として本試験と同様に評価する。
演習を重視するので,教科書の問題はもちろんのこと,問題集の問題も数多く
受講上のアドバイス
解くこと。遅刻について,授業に大幅に遅れた場合は欠課として扱う,また遅刻
の回数が多い場合は,警告を行った後,欠課扱いとすることもある。