平成 26 年度微積分解法演習 4 ( H26. 学籍番号 氏名 担当 佐藤邦 ) ( 本日の講義終了時に回収します。 解以外の途中の計算等も余白に書くこと。 ) 問1 次の関数を微分せよ。 1 ⃝ 1 √ x+4 ⃝ 1 ⃝ 2 ⃝ 2 ( )√ x + 2 2x − 1 ⃝ 3 2 √ 3 x+2 ⃝ 4 { )− 1 )− 3 1( 1 d 1 d( )√ √ = x+4 2 =− x+4 2 =− ( dx x + 4 dx 2 2 x+4 x+4 )√ d ( 2 x + 2 2x − 1 = dx √ 5 (2x − 3)4 =− √ 1 ( )3 2 x+4 } { } ) √ ( 2 ) d√ d( 2 x +2 2x − 1 + x + 2 2x − 1 dx dx √ ( 2 ) 1 4x2 − 2x + x2 + 2 5x2 − 2x + 2 1 √ √ ·2= = √ = 2x 2x − 1 + x + 2 · 2 2x − 1 2x − 1 2x − 1 ⃝ 3 )1 ) 1 −1 1 ( )− 2 d √ d( 1( 1 3 x+2= x+2 3 = x+2 3 = x+2 3 = √ 3 dx dx 3 3 3 (x + 2)2 ⃝ 4 )4 ) 4 −1 )− 1 d √ 4( 8( 8 d( 5 (2x − 3)4 = 2x − 3 5 = 2x − 3 5 · 2 = 2x − 3 5 = √ 5 dx dx 5 5 5 2x − 3 問2 ⃝ 1 ⃝ 2 ⃝ 3 ⃝ 4 1 )√ − ( 2 x+4 x+4 5x2 − 2x + 2 √ 2x − 1 1 √ 3 3 (x + 2)2 8 √ 5 5 2x − 3 次の値を求めよ。 √ 3 54 (i) √ 3 2 (ii) log4 8 (iii) loge−3 e (iv) 3log3 27 (v) log3 √ ) √ ) (√ (√ 11 + 2 + log3 11 − 2 √ √ √ √ 3 3 3 √ ( )1 54 27 × 2 27 × 3 2 √ 3 3 3 = 33 3 = 3 √ √ (i) √ = = = 27 = 3 3 3 3 2 2 2 (ii) log4 8 = log2 8 log2 23 3 log2 2 3 = = = 2 log2 4 log2 2 2 log2 2 2 loge e loge e 1 1 = = =− −3 loge e −3 loge e −3 3 ( ) 3 = 3log3 3 = 33 log3 3 = 33 = 27 公式 aloga A = A より 27 と書いても OK (iii) loge−3 e = (iv) 3log3 27 (v) log3 √ ) √ ) (√ (√ ( ) 11 + 2 + log3 11 − 2 = log3 11 − 2 = log3 32 = 2 log3 3 = 2 (i) (ii) 3 3 2 (iii) (iv) (v) 1 3 27 2 − 問3 次の関数を微分せよ。 2x3 −5 (1) e (2) log3 ( ) 4x + 1 √ ( ) (4) log x2 − 4 1 (3) 2x e + e−2x u = 2x3 − 5 → (2) u = 4x + 1 → (3) ( 2x ) −2x ( 2x ) 2 e − e d 1 1 −2x = −( =−( )2 · 2e − 2e )2 dx e2x + e−2x e2x + e−2x e2x + e−2x (4) u = log x − 4 (5) 2 ( ) d d loge u 1 d du 1 1 4 ) log3 4x + 1 = = log u · = ·4= ( dx dx loge 3 log 3 du dx log 3 u 4x + 1 log 3 ) d → dx √ ( ) ( ) d√ d √ du d 1 d log x2 − 4 = u= u· = u2 · log x2 − 4 dx du dx du dx 1 x 1 −1 √ ( u 2· 2 · 2x = ( ) ) 2 x −4 x2 − 4 log x2 − 4 = (5) 2 ) d u d u du d 2x3 −5 3 e = e = e · = eu · 6x2 = 6x2 e2x −5 dx dx du dx (1) ( ( log 3x+4 u = 2log ( ) 3x+4 → log u = log 2log ( ) 3x+4 ( ) = log 3x + 4 log 2 ( ) 1 du d d du 1 3 log 2 d ) · 3 · log 2 → ) log u = log 3x + 4 log 2 → log u =( =( dx dx du dx u dx 3x + 4 3x + 4 → → du 3 log 2 d log ) → =u ( 2 dx dx 3x + 4 (1) 6x2 e2x 3 −5 ( ( ) 3x+4 = 2log ( ) 3x+4 ( ) log 3x+4 3 log 2 3 log 2 2 ( )= ( ) 3x + 4 3x + 4 (2) (3) 4 ) 4x + 1 log 3 ) ( 2 e2x − e−2x −( )2 e2x + e−2x (4) (5) ( ( x )√ ( ) x2 − 4 log x2 − 4 ) log 3x+4 3 log 2 2 ( ) 3x + 4
© Copyright 2025 ExpyDoc