マ {-丁一躍】『一一;tトコヨ一31一1「一}- Mo撫mm我αALM&諏m 学位の種類 博士(理学) 学位記番号 理博第1484号 学位授与年月日 平成8年3月26日 学位授与の要件 学位規則第4条第1項該当 研究科、専攻 東北大学大学院理学研究科 「[1『5=、ヲ雪、iヨ}{ii-、一、■『=1「工1「{コヨ'一噌一・一…-■ヨち一'1`・1141■ーヨ一 モハマドアルマスム 氏名・(本籍〉 (博士課程)化学第二専攻 学位論文題目 P農lladiumCatalyzedHydrocarboηatioBofA眼e聡es (パラジウム触媒を用いるアレンのヒドロカーボネーション) 論文審査委員 (主査) 教授山本嘉則教授平間正博 教授吉良満夫 慧 文 論 次 General董塑roduc麺on Cぬap往eri.Pal}ad福田Cat&lyzed}{ydrocarbonat沁逡ofMloηoa網Di-sめsti重utedAlle鴛s w柚Pro猟cleOP輔es Chapter2.Re飢arkableRevers掘oft㎞eRegloseiectlv盤ylη重れe曾a丑la(i玉umCata亘yzed }{ydrocarbonatlonofAiieneswl幽泌ethyヨmalononltrile Cわap生er3.PaliadiumCatalyzedα一Add諭onofPronucleop難i!estoAlkoxyalienes C駐apter4.Pa“adiumCata互yzedγ一AdditionofPro温ucleopヒlilestoT勤iGaiienes Chapter5.PalladiumCatalyzedAddition-SubstitutlonReac“onof Alienyl(Propargyl)stannanes つ一 86 、△ lr : F I ; : The well-known Michael reaction constitutes one of the most tuseful C-C bond forming reactions wherein the C-H bond of an active methyiene and methyne adds across an alkerte bearing an eiectron withdrawing group in the presence of a base catalyst. More recently, the ransition metal cataly7.ed version o Michael reactions has been discovercd. This discovery has made us curious to seaTch this reaction with unactivated alkene, because the addition of activated methynes < nd methylenes to unactivated a]kenes is not knowrl. in this work, wish to report for the first tirne, the transition metal cata yzed addi ion of activated methyne and methylene compounds to a]Ienes, which is thought to fali under the category of vnac ivated aikene. The present findings of the application of Pd2(dba)3.CHCli-dppb as catalyiic reageni in the C-C bond formaiion reaction of allenes with pronuc]eophiles (H-NU) h ve cor! ribu ed a significanl roie in syntheiic organic chemistry. In this work various substituted allenes were empioyed and heir remarkable re_ *ioselectivities were observed. The steric effect of the pronucieophi es plays an important cole to control the regioseleclivity a d that observetion also h *ve bcen showr in this work. This ioteresting results of C-C bond formation reaction o a!ienes and their mechanism have been discussed here. Since, H and C of activated nucleophi]es (H-CXYZ) add to the double bond of allenes, would like to call this reaction "Hydrocarbonation." The so called "Hydrocarbonation" reaction repor ed heTein ia a new synthetic method or high!y unctionalized alkenes ftOm a ]enes. Ch pt r . Pa{! jVm Cata!yzed Hydrac i bOriatiOn Of 'ViOriO- anid DisubStitute}d AlieneS With 1 rOnUCieo hiieS The addition ot pronucieophile I to allene 2 proceeded smooth]y in the presence of catalytic amounts of Pd2(dba) ' CHC]s in THF under reflux to give the interna alkenes 3 (eq 1). The resu[ts are summarized in Tab[e 1-1. The addition o activated methy[ene cor itpounds to allenes has shown in this table. But activated methylene compoLlnds gave diall{ylation product (eq 2) because in ca- e of methylene compounds the. mono-adduct had a nlore reactive tertiary C-H bond. This resuits are summarized in Table !-2. A mechanistic relionale which accounts for the unprecedented additior] of activated nucleophiles to allenes is show in Scheme I . The oxidative insertion of Pd(O) into the C-H bond of the activated nucleophile would pr )duce the Pd(ll) species (or alternative]y a tautomeric structure H C(CN)C=C=NPdHLn may be moTe suitable). The carbopalladation of the allene with ouc,leophilic species wou]d afford lhe alkenylpa]ladium (rE) compiex, which would undergo reductive coupling to give the addition product and Pd(O) species. As an alternative mechanism, it may be considered that the hydropalladation of the allene with nucleophilic species gives the 7r -al]ylpalladium complex which undergoes reductive coupling to afford the adduct and palladium (O) species. The palladium catalyzed addition of f - 287 - ' l i * * ' J activated nucleophiles I to allenes 2 proceeds under essentially neutrai conditions to give i ' { regioselectively and (in some cases) stereoselectively the internal alkenes. This finding opens a '{ i door to a new area in allene chemistry as well as in transition metal catalyzed chemistry. ' i i Pall8dium Cata!yzed Hydrocar onation Of Aiienes With i Capter 2. Remarka ie ReVersai ot the RegioSeleCtivity in the { Methylma!onOnitriie i The internal adducts 6 and 7 are produced either predominantly or exclusively when the electron-withdrawing groups (F, Cl, Br. CF3, and OCF3) are pTesent at the para-position, whereas the terminal adducts 8 are afforded exclusively in the presence or the electron-donating groups (CH3 and OCH3) (eq 3) (Table 2-1). Phenylallene 5a, in which neither an electron-donating nor electron -withdrawing group is present at at the para-position, gave the terminal trans adduct 8a ' in 33 o/o yield as previously reported (entry l). As minor products, ihe internal adducts 6a (19 076) and 7a (6 o/o) were obtained. A sterically buiky pronuc]eophile lb be aved differently. Regardless of the elec ronic effect of the substituent at the para-position of arylallenes (5b-h), the terminal adducis (9b-h) were obtained as a sole product.(eq 4)(Table 2-2). The present resui s (eq 3) may e accounted for also by the hydro- or carbopa{]adatior! mechanism. The hydropaHadation mechanism is shown in Scheme 2. The c_ rbopalladation mechanlsm is shown in Scheme 3 1 investlgated 13C-NMR chemica] shifts of 5 to know the electronic etfec of the substituent Z. T e l -caTbons of 5b-f appeared at lower field by carbons of 5a, whereas t e p-carbons of 5g-h appeared 0.0{ -0.69 ppm than i'r *- P- higher field by 0.02-0.85 p ;-n than that of 5a (Tabie 2-3). Cleariy, the P-carbons of 5b-t become more electrophilic ha > h t of 5a, and the /9 -carbons of 5g-h more nucleophilic han hat of 5a. Slr!ce the IT -phase o allenr-_s becomes orthogonal at the /3-carbon, the electronic elTect of ihe subsiituents may be o e infiuential on he p-carbon han on the y -carbon. n Scheme 2, he aLtack of an e]er_irophil;c P d( ) io ihe f -c rbon produces t e interr]al adducts 6 and 7. On the other ha d, in Scheme 3, the a tack of i e nuc]eophilir:_ (Nu) to the P-c rbon ffords 6 rid 7. The p-carbon ecorries elecirophilic wi h thp_ e{ectron-wi hdra /Ing para-su s itL!e ts, w ich led o predominan c>r exclus}ve forrnatiOn o the iniernai adducis. Accordir}gly, ihe adove results seern tc, sugges th i ihe carbopal adation tnec:",anism is ITi,ore su}table i>0r ti e ydrocar"*ona ion reaction, _Ith );igh further studies are needed to settle he mechanism. t is now clear ihat the regiose]e" &ivity oi' alienes is conirolied by steric effeci of nvr_leophiles ar)d by eiecir( nic effect of the subs .{ & e i- s of aromatic rlng of arylallenes. C apte 3. Pailadium CataiyZed a-Additiorli O PrOnUC]eo i!es to A]kOXya!ienes So far it was found that the addition of pronucleophiles to alkyiallenes is catalyzed by 288 - _JL T Pd2(dba)3.CHC13 - dppb to produce the terminal ( y ) adducts 3. The reactton of arylallene bearing an electron withdrawing group at the para posilion of aromatic group, with a pronucleophile, (HC(CH3)(CN)2) produces the internal (/3) adducts 6 and 7. The palladium catalyzed addition of pronuc[eophiles to alkoxyallene 16 produces a -addition product 17 which has shown in eq 5, and the results are summarized in Table 3-1. Sterica]ly more bulky pronucieophiles also were employed with alkoxyallene. regardless of alkoxy- and phonoxy-allenes on]y y -adducts 19 were obtained.(eq6)(Table 3-2). The '3C-NMR of the alkoxyallenes was examined and it was found hat comparing with the a -carbon of the pheny]allene, the chemical shift values of the a -carbon of the alkoxyallenes i6 are hlghly deshielded (Tabie 3-3). This is reasonable, since an alkoxy group stabilizes posiiive charge formed at the a -position and hereby a nuc]eophilic attack at the a -position becomes more favorable. Taken together, he present a -addition of pronucleophiles can be accounted for either by lhe hydropalladation (Scheme 4) or carbo-paliadation mechanism (Saheme 5). Irrespeceive of ihe precise mechanism, remarkable difference. of regioselectivities in he reaction of the subsiiluted a]lenes 2, 5 and 1 6 inay be synthetically useful. C pter 4. Paiii:: -dium Cat iyzed Y-A dition O PrOn cieophiies to ! T iaaiierleS j Thioallenes with pronucleophile in he presence of a cataiytic amoun of palladlum catalyst ava terminal ( y ) adduct exclusively (eq 7). This regioselectivity is in marked contrast with that of oxygen subsiituted allenes where the addition of pronucieophiies to a[koxyallene affords ihe a -additon products. This results are summarized in Table 4-1. To e]p clarify the reason for the difference on lhe regioselectivity between the ihio-(.20), alkoxy-, and phenyl-substituted allenes, rneasured 13C NMR spectra of those alienes (Table 4-2). The (!-carbon of phenoxya]]ene appeared a signiricantry lo '!er field lhan ihose of phenyl-and phenylihio-alienes, indicating lhat the ( -carbon is hig ly electrophilic. The a -regioselectivity of a{koxy (anr_.{ arylo y) allenes can be explained by his strong electrophilic character of lhe a -carbo!rl. Very interestingly, the y carbons of phenyl- and p enylihio-allenes exhibited similar egioselectivity /alues, sug esting he same !ould be obtaine,d rom these two al[enes. t is well accepted in the heteroatom L bslituted al]yl al ion and allyl cation chernislry that (1) oxygen subs ituent stabilizes a neighborlng carbocation aod destabilizes a neighboring carb nion due i the electron donating effec of oxygen atom, (2) whereas sulfur subsiituent de.sta ilizes a ne]ghboring carbocation and stabilizes a neighboring carbanion due to he elec ron withdrawing e fecl o sulfur atorn. Lower !T =c-s !evel, compared to (r *c-o level, may be an origin of the electron wi hdrawing effeci of sulfuT. consequently, classical and traditional heteroatom substi uent effect on allylic carbocations and carbanions can be applied to understand the regioseleciiviiy of a modernized palladium catalyzed addition reaclion. The present y -addition react]on can be accounted for either by the hydropalladation (scheme 6) or carbopalladation mechanism (scheme 7) as pointed - 289 - L out previousiy. Irrespective of the precise mechanism, remarkable difference of regioselectivit ies may be synthetica]1y usefui. For example, an easily avai able a -sulfur substiiuted allyl anio l i, system is a synthetic equivalent to the combination between a sulFur substituted allyl cation, noi i forming producl is not so easy available via allyl anion chenlistry. The present Pd-caialyzed j can afford and a -C-C bond forming product very Te(adily, whereas formation oi' a y -C-C bond easiiy avaiiable, and a carbanion. 1 Chapier 5 Paii d[um U ata]yZ:8d AdditiOn SL! Stitutiori reaCtiori O Al ieri y! (PrOpa g yi stannanes ! Recent findings of hydrocarbonation reaction have cotributed a signii icant role in synthetic i or anic chemistry. The addiiion reaction of tina]iene and propargyltin with pron cleophiles in the presence of palladium catalyst also have shown a good suppoTt i'or this hydrocarbonation i I This doubie alkylation reaction (eq 8) and its Tesults have shown in Table 5-1. A plausibie } reaction. n this case the mode of addition was different from lhe addition in simple allene cases. mechanism for the double alkylation reaction is shown in Schetne 8. Oxidative insertion of Pd(O) I into H-Nu foifowed by carbopalladation to the central p -carbon of stannylallene,s woL;Id give the { pal]adium (ll) intermediate 25. The p-artack of Nu-PdLn species is reasonabie since positive charge at the P -position of alkenylstannanes is stabilized by the tributylstannyl group. Reductive elimination oi Pd(O) from 25 would give ailylstannane 26. Since il is known lhat he pailadium {. cataiyzed reaction of allyislannanes with pronuclephiles (H-Nu) affords the corresponding allylation product (ally-Nu), 26 would react further with pronucleophiles io give i e doub!e l' j i alkylation product '-4 and Pb(O). f hydTopalladation of 22 instead of carbopalladaiion, would be L l involved, 7r -ailylpalladium intermediate 27 would be produced (Scheme 9). Bu the product 30 or 31 which are toial{y different from 24. Consequently, the hydropa]ladaiion mec anism seems to be not involved in the double alkylation reaciion. - 290 ,; I -L \ Rl .C=CごC月2+ B一親り 副 Pd2{dbal∫C.トィα3 \,ト{ c二〔) τHF R2 (eqて) ノや 3 董 2 R∼CH2Nu 騨)ld'量,P禰伽mC副yzcdAddltionoほし02.評 .甥 罫一Nu 「ム Entrγ モ H-C(CN)2 一玉oo 25 H Ph 鼠ccovery of2(%) 3馬60 無 3ヘコ3 一100 33 3㍉冊 一loo 35 κ 2 2わ 艮1 Pわσ}z E二z ra!b 藍 Rl ! z9 Product ン1εld`%) CH3 撫 K 4 26 P11 Mε Ia 3d量68 ㌘10Q 5 2e P11 歌 論 3e,25 }10{)∼ 60 6 z『 PhC馬 稗e 臨 3`,百2 3367 21 23 PhcH∼ 3 魚 ZtC-c繭玉 ?N 7 }・{.H^9-co2El 39、40 一iOO 33 Ph重b Ph 絃。 玉b 3臥7(} 2476 !6 9 芝f Phα㌔ Ml島 1め 31,コs 5050 18 !o z只 瓢、 35,6G 67]3 26 口 2盆 Phα'2 3k,72 928 駐t、G』 8b 8 2{〕 ずイ ,隠 0亙。 2八桁e酬螂・略oc特rric(IOu緬丁辞職dcr紺A隙∼脚∫e11¢rα2(師∫醐d),{ (G、55mm“り.rd2({岡〕.C{ぐG3ぐ5q{d鮒/d帥ぐ26∫71gl膵).Thc繍R聖fC略 rc商uスed50rイ宮∼1`口〔fτccaヌCGε評骨3昌」∫lor2〔)hJnlhoca∼e5DfI})a'1dI【=. つ一 } 引 一 H Y x i R hl ¥/C=:C=CH2 Pd2(dba)8 C}.ICl, +R R + H-C-X THF, rcnL]x 4 1 2 (eq 2) Pa]ladium CRta]y7.ed DiRlkylalion of Allenes witil Pronuclcophi]es 1. R Table 1-2. l Entry R of Rccovcry of 2 Product H-NU Yiclcl(%) a]lcne 2 H I PI]CH2 H 2a CN XCN NC PhCH2 CN , CH2Ph 25 ; 4 1, 60 d NC 2 Ph Ph ld CN ・ . Ph 18 2b 4b, 30 ! O )<0 OX H ,O 3 CH2Ph H ! Pl]CI{2 O 2 O O O le CH2Ph njc, C15 aMolar rnlio o allene 2 2nd nronLlclcophiie Z was 2 : I . A]1 ylcids are of p Tc product iFoialed by column chromalogTaplly, IH-NMR and HR mnss peclr;1(M+) are sa[israc[ory, - 292 - _JL 二 ▼ CN さ PhH C=C PdOしnH-C-C肘 ℃ ノや 16、 MeCH2 N緕6CH3 .CN 柵3C-C-C層 1" ?dLn Hnucle。phi闘c P㌧。.c〔騒メ,、 PhCH Me?H2二C=C=CH2 Me)C'"τ'、CH2 ,C納e PdC(CN)2 ' 鴨6'CH3 CH3 σ一山kenyihydrid。palladium π一allylpa目adium intermediate inlermediale Schemei z O / H-C(CN,2 +,i G==G=CH2CH3 5molc%Pdz(dba)1.C}一IC13 26molo%dppb,THF H rcnux,20h 5a畠hia., (cq3) Z HC(CN)2¥ i/C=CH2 CH3(CH3)C(CN)2 63-f7a-f Z O/CH・ZO /C=C\+CH2+ O/H C=C /\ HCH2C(CH3)(CN)2 8a-d し。口ninnladduct lntc甲a囲duc15 一293一 -五 i R Ta ,ie Z- 1 Rcgiosclcc[ivity in HydrDcarbonolion of A!Icncs S. ProducL disiribL]lion (yield, %)* en[ry H-Nll 7. of 5 inlerrlal add. la (sl - F ) erminal adcl Recovcry ・ Or S 8 7 6 6 (7n) 33 (8*) _ 3 (s t) P (5b) 24 (6b) 8 (7b) I 9 (8i)) I O (5b) 3 Cl (5c) 50 (6c) l 7 (7c) 4 Br (5d) 46 (6d) I 4 (7d) CF; (5c) 47 (6e) 20 (7e) oCFj (5D 68 (6D 16.C'7D 5 l 9 (6 ) 2 I }1 (5a) 21 (5d) 6 7 CI{J (- g) 8 OC IJ (5i,) 51 (8c) l 5 (5g) 85 (8d) l O (5h) aThe yiclds or 8 nre bRscd OTI iso [hc i ol;Itcd yield. A mixtllrc of 6 conditions. Thc ratio or c arld 7 w:s detcrmfned by IH- Z Z CN lb .C02Ei H CH2 C-CN h H C 0=CH ,C::C 9 _ b -}] Pd(O) H ¥ L H-CC02Ef Ph 'ermina] adduct 7_ = EWG = EDG cxclu , ivcly (E(] 4) - 294 - -L 一r T3、}1e2、Z.Pd.Calaly乙cdAddiし1。n。flbt。A“。ncs5・R Ro¢ovcrγ Pfoducし(ylcld,馬) H、Nu of5 9 Zof5 Enlry Ib (5b山) 1 8(5b) 62(9b) F(5b) 2 3 Cl(5c) 68(9c) BT(5d) 32(9d1 42(5d) 6 10(9e) CF〕(5e) 7 19(5D 46(9D 0⊂F3〔5D 8 57(99) αi」(59) 9 lo(51、) 75(9}1) OC}13(5h) 論Th仁「。“di。nこ。nd…【…。nswcr。∫轟醐∼lhcωndlli。隔1」5cdr。r鵬亀hγ nlr削。〔ごq3).^11yl。1d5脚fpし叩・dudi醐。dbyC。1翻ch ArCH3 ArCH3 淑HPdNu 淑 暮Nu 6 ii Pd-H 舖 ll 印C=Cγ 闘一Pd β \ B !C=CH2 己 NuPd b ll 巨C=cpAr A「CH2\ C・ご。』CY / A「弊Y PdNu H-Pd 5, 競 Pd一層 l: 5C二CY 一8 互0 う ロな ナ 亡 i πC=cp C==CH2 7 Nu/ 1 ArCH2 \ A「〉卜 Pd脚 一8 10 8〔hcmo2. Hydr叩訓釈1浦mmcch訊ni5n1. H-N賦H-C(CH3X⊂N万 一295一 ▼ PdH 五48 腿u閥y一升d・階 111Nu ArC竺C-C!A〉C・=CヒCY庸Ar体心6+7 Pd瞬dH1しPdH 5β6=とγ玉3 1c隣 ArCHC闇=CH2Nu 轟Ui5Ar体心6÷7 PdH 3 S〔わ電nle3.Carb叩alhdationmcchanism、H-Nu:H-C(q・{3)(CN)2 Tal,ie2-3」]CChemlca1ShiftVaiues・鰍阿encs Z 、 しα鐸γChemicalsh…ftvalucs(臥PPm)呂 zαβγ 賀93・78209・5878・49 δ一 McO92・75208・7177・90 δ一 Mcg3・732095678・47 δ+ F3CO92・9i210・0!78・97 δ+ Br93・15209・6779・14 δ+ F92・982095978・84 δ+ F3cg2・91210・2778・78 訥lnCDCl,.δValuc蒋(PPm)rr。m稲S 一296一 -…≡L……髪…}ξ…{ ノ CH2Nu ArCH=C一一一串ArCHニCHCH2Nu ¥ r + H-Nu CH-C N u/ ¥ 1 16 0.5 mmol H H IC::=C CH Pd(O) CH2 ll ¥ ¥ RO RO 17 0.55 mmol (eq 5) a T ble 3-1. Pd-Cntnly7.cd Addi{ion of prDnuc]cophflcs [o A]]cncs 1 6. Enlry Pronllclcophilcs A]kox y(phcndxy)ail nes Product Tsolnted 1 Yield (%) 16 Ph(CH2)30¥ 1 C::c=c CH3CH(CN)2 / 2 17n 76 l 71] 99 17c 80 i d 75 17e 80 17r 75 17g 57 1711 49b H * 16 1 6a CH3CH(CN)C02Et lr 3 Ph(CH2)20¥ IC::C=C iR H 16b 4 i6b r PhCH20¥ 5 ! / C=C=C H 16c 6 l ir .1 6c 7 Ph O. 1;] C=C=C / H 1 6d 8 ir 1 6d t ' A]1 yic]d nrc, of pl]rc nrodticls 111-NMR, IIR rTlnss pcc[rn (M+), C-Ir COSY arc sa:; . rRctory. hThe Y-ad(!ucl IR 'as ob(ained as n minor producl. - 297 - I } i i { CN H / I CN H RO ¥ I, I RO ¥¥¥=I +CH2-0-C02E H-C-Ph C:: i6 l 19 j C02Et lb Ph (cq 6) Tahle 3-2, Addition ofstericAlly Bulky Pronucleo R of allene pronucleophiics TsolaLcd Produc[ 'i Entry yic]d (%) 19; (E : Z ratio) 16 16n Ph(CHl)3 19R; (83 : i7) 2 1b 16b Ph(CHl)l 19b: (93 : 7)75 3 1b PhCH2 i6c 19c; (93 : 7) 62 4 l 77 lb ib i 6d 19d; (93 : 7)84 Ph O 5 lc O lg 6 p:: O M:: O 16b 9e; (93 : 7) 81 16b 19r; (88 : 22) 8 HR RAll yicldF arc IH-Nh4R, of pl[re proclllcl isolafcd by colulT n chr maF , srectra (M+), C-IT COSY are R, a[isfactory. - 298 jL r :l H-NV PdO RO¥r NU -pdx _NU 17 llL RO l RO¥/ _1 ¥ = i6 Pd l Nu Scheme 4. HydropEll ladaifon mechanism . N HNU Pdo Ro¥r' Nu 17 H_Pdu _NU PdH Ro¥r //L Ro¥ F NU Scheme 5. Cnrbopa]Iadalion mccllanism. i i ; { i + i } - 299 i6 AllcncsChcmicalshi「Lvalucs(δ一ppm)請 α一Cβ一C竿C Ph(Cト{2)30 Pれ〔C尉2)20 δ+ 辿 』 PhCH20 121・寺0 201.30 90.38 121.46δt 201.29 90.64 201.29 90.98 202.77 89.43 209.58 78.50 』 121.55 』 “4.84 PhO Ph δ+ δ+ 93.79 』 T l}=一「i】『1工15}5ヨヨ『『}」1『5旨■一一一1!ヨー一・一『L}.卜1..「一■記「i一II『fE∼≡一一7『尾-『=一一■■一■」』II一「≡1一』、コヨコ右.,》.一一■5「■万7「=一コ『一.一一一=一丁一一.ーノーヨ TRble3・3.1]CChemica1ShirtValu鋳・rAlk。又yallene. 訥InCDC1].δValues(ppm)「romTMS、 RSH RS 十 H-Nu 5mo陽Pd1(dウa)」・CHCl〕 26mo臨dppb 、THF」cnuエ 1・Oeq. alR=Ph blR=PhCH2 ロ“6h 玉 20 \/ CG /、 HCH2Nu Zi Llcq,excl }5ivelyorprcdominan[ly 賦H-C(CHユ)(CN)2 b;H-C(Ph)(CN)(CO2Eし) (cq7) O 。、,甑 flH-C(CH])(CN)(CO2Et) 0 91H,無 一300一 『}一一一一-一」A T T ]ble 4-1. Addition of pronucleophilcs to Allenes 20.a Entry Pronucleopl]fics 1 l la 2 1 b Product F_:Z 20 yield(%) 21 ra[io 20a 2la, 8 I 70 : 30 20a 2il7, -99 IOO : - Thioallcne 3 Ic 20a 2ic, 87 79 : 21 4 If 20R 2lf, 89 77 : 23 5 ig 20a 2ig, 67 91 : 9 6 Ia 20b 2lh, 59b 67 : 33 20b 211, 73 72 : 2g 7 i b 8 I lOb , 2lj, 82 91 : 9 9 Ig 20b 2lk, 7 I g4 : 16 *Ai] yiclds rc of pure producl, i50]alcd by co]umn chro'Tlnlogr:lrlry li{-NMR. ilR mass speclra CM'), NOE cxncrimcnts Rre sa[isfaclo. ry. lrT1,c a-Rd(lucl wns oblnincrl s a Tninor produc'. TRb!e 4-2. ]C Chc,1licnl Shirt V lucs ofsubs[i[Vtcd AlieneS l Chemical shirt values 6 (ppm)" i ! Allcncs Ph¥ oc P Y H IC :=: C PhO¥ 0 =CH2 cc-C p-c 1+C 93.79 209 58 73 50 l 14.84 202 77 89.43 PhS¥ o; /C=::C= CH2 85.94 209.20 78.67 H CH2 / C =C= H aln COCIJ. 5 vniucs (ppmO from TMS. -301 - i { : H- llu Pdo l RS ¥ ¥c H2Nu " 21 H- Pdll _ U Pd //RS 20 lrr I AS¥l ¥: u Scheme 6. Hydropa]ladaiion mechanism. Pdo H-Nu ¥ < ,1: RS H CH2Nu 21 H-Pdll _NU H RS ¥ IL RS dfl ¥ < 20 CH2Phlu Scl]emQ 7. Carbbpallada[ion !Tlechanism. Fl3Sn ¥ Pdo u ¥ /C: C:::: CH2 + H-Nu /C: ::CH H 22 NucH2 (Bu3sn-CH2-C CH) 24 (cq 8) 23 - 302 - _JL γ 丁目ble5一!.Pd・Catalyzcd〈ddl“on-SubslllLlti・nRcactlo・・rP【'omd。Philcswilh Allcnylstan・“n㏄andPropagylstannanes、a Entry Products24 Stann巳“¢s Isoialedyield % 玉(}1-Nu) (220r23) NGMe 1 一1{c(cH」xCN)ユ Z2(R=n-Bu) 賄 2 i臼 灘 24我 24呂 2Z(R=Ph) 64 59 NCPh 3 H⊂(Ph)(CN)CO2Eし 22(Rニn-Bu) 玉静 El駐 24b go NCCO2E1 4 玉b 22(R=Ph) 24b 72 5 玉1) 2Z(R=Me) 24b 70 NCMθ 6 闘C(Mc)(CN)COIE[ 22(R=ローBu) 互f 7 鯉 驚, 22(R=Ph) 24f 24f go' 35 NCCN 8 肩C(CN)zOCH20CH玉 22(R=11-Bu) 野 9 iわ 鵡隠CHl・・ 23(R=n-Bu) 24b 35 53 計くmlx〔urcoほ(UmmGl),Z2(O.5mmob(crZ3),Pd2dba3'CHα3(tQmolc%, 52mg)、dPPb(52molc%,l12m9)andTI・IF(2ml)wasrcnL1xcdfor48hし111dcr〈r almosphcrc.ThcisolalcdproductヌwerCPureproducts・ 一303一 Carbopalladatfon - Transmatallatlon Nu U¥// , pdo H-Nu 24 BU3SnH H-Pd-Nu H-Pd-NU Bu3sn¥// NU¥r "B1'3Sn NU 26 L Bu3Sn ¥ s Pd 22 25 Schcme 8 NUY l Hydropalladation - Transmetallation u ¥/P NU or 30 Nu 31 r T r BU SnH Pdo , H-Pd-NU } Bu3Sn¥r 29 H-Pd-Nv Nu ( or28 Bu3Sn¥1; ;' NU ) L L:BU3Sn¥/ d 'Nu 22 27 Scheme 9 - 304 ,* γ 論文審査の結果の要旨 Pronuleophile(H-Nu)を塩基で処理してNucleophile(Nu)としてから、Michaelacceptorに反応 させ炭素一炭素結合を生成する反応は有機合成上古典的でしかも有用な反応である。従来の有機合 成では、Pronucieophileのまま反応させる手法はきわめて少なく、上で述べた様にNucleophileに まず変換することが必要であった.A1-Masumはパラジウム触媒存在下に、Pronudeopぬiieがア レンの2重結合に付加するという全く新しいタイプの反応を見い出した。これは}1-Nu(水素一炭素 結合)が炭素一炭素2重結合に付加するもので、ヒドロカーボネーション反応と云える形式のもので ある。Pronucleophlleをそのまま使用できる点、および非活性化オレフィン(Michaelacceptorで ない)のアレンに反応しうる点が特筆すべきである。詳細なメカニズムの検討の結果、反応はH.Nu へのPdlO)の酸化的付加、}1-Pd(II)=Nu活性種の生成、2重結合へのhydropaIladationまたは carbopalladatlon、最後にPd(0)種の還元的脱離によって進行することが判明した。また、H.Nu の2重結合への付加の位置選択性はアレンの置換基によって大きく左右されることが明らかになっ た。モノ置換またはジ置換アルキ,レアレンではγ付加体が、パラ位に電子吸引基をもつフェニル 置換アレンではβ付加体を、アルコキシ及びフェノキシ置換アレンではα付加体を、アルキルチ オ置換体ではγ付加体を与えることが判明した。この新反応により、各種官能基を有するオレフ ィンを容易に合成できるようになり、有機合成上有用な新手法を開拓したことになる。 これ等の研究成果は博士論文として適当であり、本人が自立して研究活動を行うに必要な高度 の研究能力と学識を有することを示している。よって、MohammadAl-Masum提出の論文は、博 士(理学)の学位論文として合格と認める。 ノ 一305一 人
© Copyright 2024 ExpyDoc