マ
{-丁一躍】『一一;tトコヨ一31一1「一}-
Mo撫mm我αALM&諏m
学位の種類
博士(理学)
学位記番号
理博第1484号
学位授与年月日
平成8年3月26日
学位授与の要件
学位規則第4条第1項該当
研究科、専攻
東北大学大学院理学研究科
「[1『5=、ヲ雪、iヨ}{ii-、一、■『=1「工1「{コヨ'一噌一・一…-■ヨち一'1`・1141■ーヨ一
モハマドアルマスム
氏名・(本籍〉
(博士課程)化学第二専攻
学位論文題目
P農lladiumCatalyzedHydrocarboηatioBofA眼e聡es
(パラジウム触媒を用いるアレンのヒドロカーボネーション)
論文審査委員
(主査)
教授山本嘉則教授平間正博
教授吉良満夫
慧
文
論
次
General董塑roduc麺on
Cぬap往eri.Pal}ad福田Cat&lyzed}{ydrocarbonat沁逡ofMloηoa網Di-sめsti重utedAlle鴛s
w柚Pro猟cleOP輔es
Chapter2.Re飢arkableRevers掘oft㎞eRegloseiectlv盤ylη重れe曾a丑la(i玉umCata亘yzed
}{ydrocarbonatlonofAiieneswl幽泌ethyヨmalononltrile
Cわap生er3.PaliadiumCatalyzedα一Add諭onofPronucleop難i!estoAlkoxyalienes
C駐apter4.Pa“adiumCata互yzedγ一AdditionofPro温ucleopヒlilestoT勤iGaiienes
Chapter5.PalladiumCatalyzedAddition-SubstitutlonReac“onof
Alienyl(Propargyl)stannanes
つ一
86
、△
lr
:
F I
;
:
The well-known Michael reaction constitutes one of the most tuseful C-C bond forming
reactions wherein the C-H bond of an active methyiene and methyne adds across an alkerte
bearing an eiectron withdrawing group in the presence of a base catalyst. More recently, the
ransition metal cataly7.ed version o
Michael reactions has been discovercd. This discovery has
made us curious to seaTch this reaction with unactivated alkene, because the addition of activated
methynes < nd methylenes to unactivated a]kenes is not knowrl. in this work,
wish to report for
the first tirne, the transition metal cata yzed addi ion of activated methyne and methylene
compounds to a]Ienes, which is thought to fali under the category of vnac ivated aikene. The
present findings of the application of Pd2(dba)3.CHCli-dppb as
catalyiic reageni in the C-C
bond formaiion reaction of allenes with pronuc]eophiles (H-NU) h ve cor! ribu ed a significanl
roie in syntheiic organic chemistry. In this work various substituted allenes were empioyed and
heir remarkable re_ *ioselectivities were observed. The steric effect of the pronucieophi es plays
an important cole to control the regioseleclivity a d that observetion also h *ve bcen showr in this
work. This ioteresting results of C-C bond formation reaction o
a!ienes and their mechanism
have been discussed here. Since, H and C of activated nucleophi]es (H-CXYZ) add to the double
bond of allenes,
would like to call this reaction "Hydrocarbonation." The so called
"Hydrocarbonation" reaction repor ed heTein ia a new synthetic method or high!y unctionalized
alkenes ftOm a ]enes.
Ch pt r
. Pa{!
jVm Cata!yzed Hydrac i bOriatiOn Of
'ViOriO- anid
DisubStitute}d AlieneS With 1 rOnUCieo hiieS
The addition ot pronucieophile I to allene 2 proceeded smooth]y in the presence of catalytic
amounts of Pd2(dba)
' CHC]s in THF under reflux to give the interna
alkenes 3 (eq 1). The
resu[ts are summarized in Tab[e 1-1. The addition o activated methy[ene cor itpounds to allenes
has shown in this table. But activated methylene compoLlnds gave diall{ylation product (eq 2)
because in ca- e of methylene compounds the. mono-adduct had a nlore reactive tertiary C-H bond.
This resuits are summarized in Table !-2. A mechanistic relionale which accounts for the
unprecedented additior] of activated nucleophiles to allenes is show in Scheme I . The oxidative
insertion of Pd(O) into the C-H bond of the activated nucleophile would pr )duce the Pd(ll)
species (or alternative]y a tautomeric structure H C(CN)C=C=NPdHLn may be moTe suitable).
The carbopalladation of the allene with ouc,leophilic species wou]d afford lhe alkenylpa]ladium
(rE) compiex, which would undergo reductive coupling to give the addition product and Pd(O)
species. As an alternative mechanism, it may be considered that the hydropalladation of the
allene with nucleophilic species gives the 7r -al]ylpalladium complex which undergoes reductive
coupling to afford the adduct and palladium (O) species. The palladium catalyzed addition of
f
- 287 -
'
l
i
*
*
'
J
activated nucleophiles I to allenes 2 proceeds under essentially neutrai conditions to give
i
'
{
regioselectively and (in some cases) stereoselectively the internal alkenes. This finding opens a
'{
i
door to a new area in allene chemistry as well as in transition metal catalyzed chemistry.
'
i
i
Pall8dium Cata!yzed Hydrocar onation Of Aiienes With
i
Capter 2. Remarka ie ReVersai ot the RegioSeleCtivity in the
{
Methylma!onOnitriie
i
The internal adducts 6 and 7 are produced either predominantly or exclusively when the
electron-withdrawing groups (F, Cl, Br. CF3, and OCF3) are pTesent at the para-position, whereas
the terminal adducts 8 are afforded exclusively in the presence or the electron-donating groups
(CH3 and OCH3) (eq 3) (Table 2-1). Phenylallene 5a, in which neither an electron-donating nor
electron -withdrawing group is present at at the para-position, gave the terminal trans adduct 8a
'
in 33 o/o yield as previously reported (entry l). As minor products, ihe internal adducts 6a (19 076)
and 7a (6 o/o) were obtained. A sterically buiky pronuc]eophile lb be aved differently.
Regardless of the elec ronic effect of the substituent at the para-position of arylallenes (5b-h),
the terminal adducis (9b-h) were obtained as a sole product.(eq 4)(Table 2-2). The present resui s
(eq 3) may
e accounted for also by the hydro- or carbopa{]adatior! mechanism. The
hydropaHadation mechanism is shown in Scheme 2. The c_ rbopalladation mechanlsm is shown in
Scheme 3 1 investlgated 13C-NMR chemica] shifts of 5 to know the electronic etfec of the
substituent Z. T e l -caTbons of 5b-f appeared at lower field by
carbons of 5a, whereas t e p-carbons of 5g-h appeared
0.0{ -0.69 ppm than i'r *- P-
higher field by
0.02-0.85 p ;-n
than that of 5a (Tabie 2-3). Cleariy, the P-carbons of 5b-t become more electrophilic ha > h t
of 5a, and the /9 -carbons of 5g-h more nucleophilic han hat of 5a. Slr!ce the IT -phase o allenr-_s
becomes orthogonal at the /3-carbon, the electronic elTect of ihe subsiituents may be
o e
infiuential on he p-carbon han on the y -carbon. n Scheme 2, he aLtack of an e]er_irophil;c
P d( ) io ihe f -c rbon produces t e interr]al adducts 6 and 7. On the other ha d, in Scheme 3,
the a tack of i e nuc]eophilir:_ (Nu) to the P-c rbon
ffords 6 rid 7. The p-carbon ecorries
elecirophilic wi h thp_ e{ectron-wi hdra /Ing para-su s itL!e ts, w ich led o predominan c>r
exclus}ve forrnatiOn o the iniernai adducis. Accordir}gly, ihe adove results seern tc, sugges th i
ihe carbopal adation tnec:",anism is ITi,ore su}table i>0r ti e ydrocar"*ona ion reaction, _Ith );igh
further studies are needed to settle he mechanism. t is now clear ihat the regiose]e" &ivity oi'
alienes is conirolied by steric effeci of nvr_leophiles ar)d by eiecir( nic effect of the subs .{ & e i- s
of aromatic rlng of arylallenes.
C apte
3. Pailadium CataiyZed a-Additiorli O
PrOnUC]eo
i!es to
A]kOXya!ienes
So far it was found that the addition of pronucleophiles to alkyiallenes is catalyzed by
288 -
_JL
T
Pd2(dba)3.CHC13 - dppb to produce the terminal ( y ) adducts 3. The reactton of arylallene bearing
an electron withdrawing group at the para posilion of aromatic group, with a pronucleophile, (HC(CH3)(CN)2) produces the internal (/3) adducts 6 and 7. The palladium catalyzed addition of
pronuc[eophiles to alkoxyallene 16 produces a -addition product 17 which has shown in eq 5,
and the results are summarized in Table 3-1. Sterica]ly more bulky pronucieophiles also were
employed with alkoxyallene. regardless of alkoxy- and phonoxy-allenes on]y y -adducts 19 were
obtained.(eq6)(Table 3-2). The '3C-NMR of the alkoxyallenes was examined and it was found
hat comparing with the a -carbon of the pheny]allene, the chemical shift values of the a -carbon
of the alkoxyallenes i6 are hlghly deshielded (Tabie 3-3). This is reasonable, since an alkoxy
group stabilizes posiiive charge formed at the a -position and hereby a nuc]eophilic attack at the
a -position becomes more favorable. Taken together, he present a -addition of pronucleophiles
can be accounted for either by lhe hydropalladation (Scheme 4) or carbo-paliadation mechanism
(Saheme 5). Irrespeceive of ihe precise mechanism, remarkable difference. of regioselectivities in
he reaction of the subsiiluted a]lenes 2, 5 and 1 6 inay be synthetically useful.
C
pter 4. Paiii:: -dium Cat iyzed Y-A dition O
PrOn cieophiies to
!
T iaaiierleS
j
Thioallenes with pronucleophile in
he presence of a cataiytic amoun
of palladlum catalyst
ava terminal ( y ) adduct exclusively (eq 7). This regioselectivity is in marked contrast with that
of oxygen subsiituted allenes where the addition of pronucieophiies to a[koxyallene affords ihe
a -additon products. This results are summarized in Table 4-1. To e]p clarify the reason for the
difference on lhe regioselectivity between the ihio-(.20), alkoxy-, and phenyl-substituted allenes,
rneasured 13C NMR spectra of those alienes (Table 4-2). The (!-carbon of phenoxya]]ene
appeared a signiricantry lo '!er field lhan ihose of phenyl-and phenylihio-alienes, indicating lhat
the ( -carbon is hig ly electrophilic. The a -regioselectivity of a{koxy (anr_.{ arylo y) allenes can
be explained by his strong electrophilic character of lhe a -carbo!rl. Very interestingly, the y carbons of phenyl- and p enylihio-allenes exhibited similar
egioselectivity
/alues, sug esting
he same
!ould be obtaine,d rom these two al[enes. t is well accepted in the heteroatom
L bslituted al]yl al ion and allyl cation chernislry that (1) oxygen subs ituent stabilizes a
neighborlng carbocation aod destabilizes a neighboring carb nion due i
the electron donating
effec of oxygen atom, (2) whereas sulfur subsiituent de.sta ilizes a ne]ghboring carbocation and
stabilizes a neighboring carbanion due to he elec ron withdrawing e fecl o sulfur atorn. Lower
!T =c-s !evel, compared to (r *c-o level, may be an origin of the electron wi hdrawing effeci of
sulfuT. consequently, classical and traditional heteroatom substi uent effect on allylic
carbocations and carbanions can be applied to understand the regioseleciiviiy of a modernized
palladium catalyzed addition reaclion. The present y -addition react]on can be accounted for
either by the hydropalladation (scheme 6) or carbopalladation mechanism (scheme 7) as pointed
- 289 -
L
out previousiy. Irrespective of the precise mechanism, remarkable difference of regioselectivit
ies may be synthetica]1y usefui. For example, an easily avai able a -sulfur substiiuted allyl anio l
i,
system is a synthetic equivalent to the combination between a sulFur substituted allyl cation, noi
i
forming producl is not so easy available via allyl anion chenlistry. The present Pd-caialyzed
j
can afford and a -C-C bond forming product very Te(adily, whereas formation oi' a y -C-C bond
easiiy avaiiable, and a carbanion.
1
Chapier 5 Paii d[um U ata]yZ:8d AdditiOn SL! Stitutiori reaCtiori O
Al ieri y! (PrOpa g yi
stannanes
!
Recent findings of hydrocarbonation reaction have cotributed a signii icant role in synthetic
i
or anic chemistry. The addiiion reaction of tina]iene and propargyltin with pron cleophiles in
the presence of palladium catalyst also have shown a good suppoTt i'or this hydrocarbonation
i
I
This doubie alkylation reaction (eq 8) and its Tesults have shown in Table 5-1. A plausibie
}
reaction. n this case the mode of addition was different from lhe addition in simple allene cases.
mechanism for the double alkylation reaction is shown in Schetne 8. Oxidative insertion of Pd(O)
I
into H-Nu foifowed by carbopalladation to the central p -carbon of stannylallene,s woL;Id give the
{
pal]adium (ll) intermediate 25. The p-artack of Nu-PdLn species is reasonabie since positive
charge at the P -position of alkenylstannanes is stabilized by the tributylstannyl group. Reductive
elimination oi
Pd(O) from 25 would give ailylstannane 26. Since il is known lhat
he pailadium
{.
cataiyzed reaction of allyislannanes with pronuclephiles (H-Nu) affords the corresponding
allylation product (ally-Nu), 26 would react further with pronucleophiles io give i e doub!e
l'
j
i
alkylation product '-4 and Pb(O). f hydTopalladation of 22 instead of carbopalladaiion, would be
L
l
involved, 7r -ailylpalladium intermediate 27 would be produced (Scheme 9). Bu
the product 30
or 31 which are toial{y different from 24. Consequently, the hydropa]ladaiion mec anism seems
to be not involved in the double alkylation reaciion.
- 290 ,;
I
-L
\
Rl
.C=CごC月2+
B一親り
副
Pd2{dbal∫C.トィα3
\,ト{
c二〔)
τHF
R2
(eqて)
ノや
3
董
2
R∼CH2Nu
騨)ld'量,P禰伽mC副yzcdAddltionoほし02.評
.甥
罫一Nu
「ム
Entrγ
モ
H-C(CN)2
一玉oo
25
H
Ph
鼠ccovery
of2(%)
3馬60
無
3ヘコ3
一100
33
3㍉冊
一loo
35
κ
2
2わ
艮1
Pわσ}z
E二z
ra!b
藍
Rl
!
z9
Product
ン1εld`%)
CH3
撫
K
4
26
P11
Mε
Ia
3d量68
㌘10Q
5
2e
P11
歌
論
3e,25
}10{)∼
60
6
z『
PhC馬
稗e
臨
3`,百2
3367
21
23
PhcH∼
3
魚
ZtC-c繭玉
?N
7
}・{.H^9-co2El
39、40
一iOO
33
Ph重b
Ph
絃。
玉b
3臥7(}
2476
!6
9
芝f
Phα㌔
Ml島
1め
31,コs
5050
18
!o
z只
瓢、
35,6G
67]3
26
口
2盆
Phα'2
3k,72
928
駐t、G』
8b
8
2{〕
ずイ
,隠
0亙。
2八桁e酬螂・略oc特rric(IOu緬丁辞職dcr紺A隙∼脚∫e11¢rα2(師∫醐d),{
(G、55mm“り.rd2({岡〕.C{ぐG3ぐ5q{d鮒/d帥ぐ26∫71gl膵).Thc繍R聖fC略
rc商uスed50rイ宮∼1`口〔fτccaヌCGε評骨3昌」∫lor2〔)hJnlhoca∼e5DfI})a'1dI【=.
つ一
}
引
一
H
Y
x
i
R
hl
¥/C=:C=CH2
Pd2(dba)8 C}.ICl,
+R
R
+ H-C-X
THF, rcnL]x
4
1
2
(eq 2)
Pa]ladium CRta]y7.ed DiRlkylalion of Allenes witil Pronuclcophi]es 1.
R
Table 1-2.
l
Entry
R of
Rccovcry of 2
Product
H-NU
Yiclcl(%)
a]lcne 2
H
I
PI]CH2
H
2a
CN
XCN
NC
PhCH2
CN
, CH2Ph 25
;
4 1, 60
d
NC
2
Ph
Ph
ld
CN
・
. Ph
18
2b
4b, 30
!
O
)<0
OX
H
,O
3
CH2Ph
H
!
Pl]CI{2
O
2
O
O
O
le
CH2Ph
njc, C15
aMolar rnlio o allene 2 2nd nronLlclcophiie Z was 2 : I . A]1 ylcids are of p Tc product
iFoialed by column chromalogTaplly, IH-NMR and HR mnss peclr;1(M+) are sa[israc[ory,
- 292 -
_JL
二
▼
CN
さ
PhH
C=C
PdOしnH-C-C肘
℃
ノや
16、
MeCH2
N緕6CH3
.CN
柵3C-C-C層
1"
?dLn
Hnucle。phi闘c
P㌧。.c〔騒メ,、
PhCH
Me?H2二C=C=CH2
Me)C'"τ'、CH2
,C納e
PdC(CN)2
'
鴨6'CH3
CH3
σ一山kenyihydrid。palladium
π一allylpa目adium
intermediate
inlermediale
Schemei
z
O
/
H-C(CN,2
+,i
G==G=CH2CH3
5molc%Pdz(dba)1.C}一IC13
26molo%dppb,THF
H
rcnux,20h
5a畠hia.,
(cq3)
Z
HC(CN)2¥
i/C=CH2
CH3(CH3)C(CN)2
63-f7a-f
Z
O/CH・ZO
/C=C\+CH2+
O/H
C=C
/\
HCH2C(CH3)(CN)2
8a-d
し。口ninnladduct
lntc甲a囲duc15
一293一
-五
i
R
Ta ,ie Z- 1
Rcgiosclcc[ivity in HydrDcarbonolion of A!Icncs S.
ProducL disiribL]lion (yield, %)*
en[ry
H-Nll
7. of 5
inlerrlal add.
la
(sl - F )
erminal adcl Recovcry
・ Or S
8
7
6
6 (7n)
33 (8*)
_ 3 (s t)
P (5b)
24 (6b)
8 (7b)
I 9 (8i))
I O (5b)
3
Cl (5c)
50 (6c)
l 7 (7c)
4
Br (5d)
46 (6d)
I 4 (7d)
CF; (5c)
47 (6e)
20 (7e)
oCFj (5D
68 (6D
16.C'7D
5
l 9 (6 )
2
I
}1 (5a)
21 (5d)
6
7
CI{J (- g)
8
OC IJ (5i,)
51 (8c)
l 5 (5g)
85 (8d)
l O (5h)
aThe yiclds or 8 nre bRscd OTI iso
[hc i ol;Itcd yield. A mixtllrc of 6
conditions. Thc ratio or c arld 7 w:s detcrmfned by IH-
Z
Z
CN
lb
.C02Ei
H CH2 C-CN
h
H C 0=CH
,C::C
9
_ b -}]
Pd(O) H
¥
L
H-CC02Ef
Ph
'ermina] adduct
7_ = EWG
= EDG
cxclu , ivcly (E(] 4)
- 294 -
-L
一r
T3、}1e2、Z.Pd.Calaly乙cdAddiし1。n。flbt。A“。ncs5・R
Ro¢ovcrγ
Pfoducし(ylcld,馬)
H、Nu
of5
9
Zof5
Enlry
Ib
(5b山)
1
8(5b)
62(9b)
F(5b)
2
3
Cl(5c)
68(9c)
BT(5d)
32(9d1
42(5d)
6
10(9e)
CF〕(5e)
7
19(5D
46(9D
0⊂F3〔5D
8
57(99)
αi」(59)
9
lo(51、)
75(9}1)
OC}13(5h)
論Th仁「。“di。nこ。nd…【…。nswcr。∫轟醐∼lhcωndlli。隔1」5cdr。r鵬亀hγ
nlr削。〔ごq3).^11yl。1d5脚fpし叩・dudi醐。dbyC。1翻ch
ArCH3
ArCH3
淑HPdNu
淑
暮Nu
6
ii
Pd-H
舖
ll
印C=Cγ
闘一Pd
β
\
B
!C=CH2
己
NuPd
b
ll
巨C=cpAr
A「CH2\
C・ご。』CY
/
A「弊Y
PdNu
H-Pd
5,
競
Pd一層
l:
5C二CY
一8
互0
う
ロな
ナ
亡
i
πC=cp
C==CH2
7
Nu/
1
ArCH2
\
A「〉卜
Pd脚
一8
10
8〔hcmo2.
Hydr叩訓釈1浦mmcch訊ni5n1.
H-N賦H-C(CH3X⊂N万
一295一
▼
PdH
五48
腿u閥y一升d・階
111Nu
ArC竺C-C!A〉C・=CヒCY庸Ar体心6+7
Pd瞬dH1しPdH
5β6=とγ玉3
1c隣
ArCHC闇=CH2Nu
轟Ui5Ar体心6÷7
PdH
3
S〔わ電nle3.Carb叩alhdationmcchanism、H-Nu:H-C(q・{3)(CN)2
Tal,ie2-3」]CChemlca1ShiftVaiues・鰍阿encs
Z
、
しα鐸γChemicalsh…ftvalucs(臥PPm)呂
zαβγ
賀93・78209・5878・49
δ一
McO92・75208・7177・90
δ一
Mcg3・732095678・47
δ+
F3CO92・9i210・0!78・97
δ+
Br93・15209・6779・14
δ+
F92・982095978・84
δ+
F3cg2・91210・2778・78
訥lnCDCl,.δValuc蒋(PPm)rr。m稲S
一296一
-…≡L……髪…}ξ…{
ノ
CH2Nu
ArCH=C一一一串ArCHニCHCH2Nu
¥
r
+ H-Nu
CH-C
N u/ ¥
1
16
0.5 mmol
H
H
IC::=C CH
Pd(O)
CH2
ll
¥
¥
RO
RO
17
0.55 mmol
(eq 5)
a
T ble 3-1.
Pd-Cntnly7.cd Addi{ion of prDnuc]cophflcs [o A]]cncs 1 6.
Enlry
Pronllclcophilcs
A]kox y(phcndxy)ail nes
Product
Tsolnted
1
Yield (%)
16
Ph(CH2)30¥
1
C::c=c
CH3CH(CN)2
/
2
17n
76
l 71]
99
17c
80
i d
75
17e
80
17r
75
17g
57
1711
49b
H
*
16
1 6a
CH3CH(CN)C02Et
lr
3
Ph(CH2)20¥
IC::C=C
iR
H 16b
4
i6b
r
PhCH20¥
5
!
/
C=C=C
H 16c
6
l
ir
.1 6c
7
Ph O.
1;]
C=C=C
/
H 1 6d
8
ir
1 6d
t
' A]1 yic]d nrc, of pl]rc nrodticls 111-NMR, IIR rTlnss pcc[rn (M+), C-Ir COSY arc
sa:; . rRctory. hThe Y-ad(!ucl IR 'as ob(ained as n minor producl.
- 297 -
I
}
i
i
{
CN
H
/
I CN H
RO
¥
I,
I
RO
¥¥¥=I +CH2-0-C02E
H-C-Ph C::
i6
l
19 j
C02Et
lb
Ph (cq 6)
Tahle 3-2, Addition ofstericAlly Bulky Pronucleo
R of allene
pronucleophiics
TsolaLcd
Produc[
'i
Entry
yic]d (%)
19; (E : Z ratio)
16
16n
Ph(CHl)3
19R; (83 : i7)
2
1b
16b
Ph(CHl)l
19b: (93 : 7)75
3
1b
PhCH2 i6c
19c; (93 : 7) 62
4
l
77
lb
ib
i 6d
19d; (93 : 7)84
Ph
O
5
lc
O
lg
6
p:: O
M:: O
16b
9e; (93 : 7) 81
16b
19r; (88 : 22) 8
HR
RAll yicldF arc IH-Nh4R,
of pl[re proclllcl
isolafcd by colulT n chr
maF , srectra (M+), C-IT COSY are R, a[isfactory.
- 298
jL
r
:l
H-NV
PdO
RO¥r
NU
-pdx _NU
17
llL RO
l
RO¥/ _1
¥ =
i6
Pd
l
Nu
Scheme 4.
HydropEll ladaifon mechanism .
N
HNU
Pdo
Ro¥r'
Nu
17
H_Pdu _NU
PdH
Ro¥r
//L Ro¥ F
NU
Scheme 5.
Cnrbopa]Iadalion mccllanism.
i
i
;
{
i
+
i
}
- 299
i6
AllcncsChcmicalshi「Lvalucs(δ一ppm)請
α一Cβ一C竿C
Ph(Cト{2)30
Pれ〔C尉2)20
δ+
辿
』
PhCH20
121・寺0
201.30
90.38
121.46δt
201.29
90.64
201.29
90.98
202.77
89.43
209.58
78.50
』
121.55
』
“4.84
PhO
Ph
δ+
δ+
93.79
』
T l}=一「i】『1工15}5ヨヨ『『}」1『5旨■一一一1!ヨー一・一『L}.卜1..「一■記「i一II『fE∼≡一一7『尾-『=一一■■一■」』II一「≡1一』、コヨコ右.,》.一一■5「■万7「=一コ『一.一一一=一丁一一.ーノーヨ
TRble3・3.1]CChemica1ShirtValu鋳・rAlk。又yallene.
訥InCDC1].δValues(ppm)「romTMS、
RSH
RS
十
H-Nu
5mo陽Pd1(dウa)」・CHCl〕
26mo臨dppb
、THF」cnuエ
1・Oeq.
alR=Ph
blR=PhCH2
ロ“6h
玉
20
\/
CG
/、
HCH2Nu
Zi
Llcq,excl }5ivelyorprcdominan[ly
賦H-C(CHユ)(CN)2
b;H-C(Ph)(CN)(CO2Eし)
(cq7)
O
。、,甑
flH-C(CH])(CN)(CO2Et)
0
91H,無
一300一
『}一一一一-一」A
T
T ]ble 4-1. Addition of pronucleophilcs to Allenes 20.a
Entry Pronucleopl]fics
1
l
la
2
1
b
Product
F_:Z
20
yield(%) 21
ra[io
20a
2la, 8 I
70 : 30
20a
2il7, -99
IOO : -
Thioallcne
3
Ic
20a
2ic, 87
79 : 21
4
If
20R
2lf, 89
77 : 23
5
ig
20a
2ig, 67
91 : 9
6
Ia
20b
2lh, 59b
67 : 33
20b
211, 73
72 : 2g
7
i
b
8
I
lOb ,
2lj, 82
91 : 9
9
Ig
20b
2lk, 7 I
g4 : 16
*Ai] yiclds rc of pure producl, i50]alcd by co]umn chro'Tlnlogr:lrlry li{-NMR. ilR
mass speclra CM'), NOE cxncrimcnts Rre sa[isfaclo. ry. lrT1,c a-Rd(lucl wns oblnincrl
s a Tninor produc'.
TRb!e 4-2. ]C Chc,1licnl Shirt V lucs ofsubs[i[Vtcd AlieneS
l
Chemical shirt values 6 (ppm)"
i
!
Allcncs
Ph¥ oc P Y
H
IC :=:
C
PhO¥ 0
=CH2
cc-C
p-c
1+C
93.79 209 58 73 50
l 14.84 202 77 89.43
PhS¥ o;
/C=::C= CH2
85.94 209.20 78.67
H
CH2
/
C =C=
H
aln COCIJ. 5 vniucs (ppmO from TMS.
-301 -
i
{
:
H- llu
Pdo
l
RS
¥ ¥c H2Nu "
21
H- Pdll _ U
Pd //RS 20
lrr
I
AS¥l
¥:
u
Scheme 6. Hydropa]ladaiion mechanism.
Pdo H-Nu
¥ < ,1:
RS
H
CH2Nu
21
H-Pdll _NU
H
RS
¥
IL
RS
dfl ¥
< 20
CH2Phlu
Scl]emQ 7. Carbbpallada[ion !Tlechanism.
Fl3Sn
¥
Pdo
u
¥
/C: C:::: CH2 + H-Nu /C: ::CH
H
22
NucH2
(Bu3sn-CH2-C
CH)
24
(cq
8)
23
- 302 -
_JL
γ
丁目ble5一!.Pd・Catalyzcd〈ddl“on-SubslllLlti・nRcactlo・・rP【'omd。Philcswilh
Allcnylstan・“n㏄andPropagylstannanes、a
Entry
Products24
Stann巳“¢s
Isoialedyield
%
玉(}1-Nu)
(220r23)
NGMe
1
一1{c(cH」xCN)ユ
Z2(R=n-Bu)
賄
2
i臼
灘
24我
24呂
2Z(R=Ph)
64
59
NCPh
3
H⊂(Ph)(CN)CO2Eし
22(Rニn-Bu)
玉静
El駐
24b
go
NCCO2E1
4
玉b
22(R=Ph)
24b
72
5
玉1)
2Z(R=Me)
24b
70
NCMθ
6
闘C(Mc)(CN)COIE[
22(R=ローBu)
互f
7
鯉
驚,
22(R=Ph)
24f
24f
go'
35
NCCN
8
肩C(CN)zOCH20CH玉
22(R=11-Bu)
野
9
iわ
鵡隠CHl・・
23(R=n-Bu)
24b
35
53
計くmlx〔urcoほ(UmmGl),Z2(O.5mmob(crZ3),Pd2dba3'CHα3(tQmolc%,
52mg)、dPPb(52molc%,l12m9)andTI・IF(2ml)wasrcnL1xcdfor48hし111dcr〈r
almosphcrc.ThcisolalcdproductヌwerCPureproducts・
一303一
Carbopalladatfon - Transmatallatlon
Nu
U¥// , pdo H-Nu
24
BU3SnH
H-Pd-Nu
H-Pd-NU
Bu3sn¥// NU¥r "B1'3Sn
NU
26
L Bu3Sn ¥ s
Pd
22
25
Schcme 8
NUY
l
Hydropalladation - Transmetallation
u ¥/P NU
or
30 Nu 31
r T
r
BU SnH
Pdo
,
H-Pd-NU
}
Bu3Sn¥r 29 H-Pd-Nv
Nu
( or28 Bu3Sn¥1;
;' NU ) L
L:BU3Sn¥/
d
'Nu
22
27
Scheme 9
- 304 ,*
γ
論文審査の結果の要旨
Pronuleophile(H-Nu)を塩基で処理してNucleophile(Nu)としてから、Michaelacceptorに反応
させ炭素一炭素結合を生成する反応は有機合成上古典的でしかも有用な反応である。従来の有機合
成では、Pronucieophileのまま反応させる手法はきわめて少なく、上で述べた様にNucleophileに
まず変換することが必要であった.A1-Masumはパラジウム触媒存在下に、Pronudeopぬiieがア
レンの2重結合に付加するという全く新しいタイプの反応を見い出した。これは}1-Nu(水素一炭素
結合)が炭素一炭素2重結合に付加するもので、ヒドロカーボネーション反応と云える形式のもので
ある。Pronucleophlleをそのまま使用できる点、および非活性化オレフィン(Michaelacceptorで
ない)のアレンに反応しうる点が特筆すべきである。詳細なメカニズムの検討の結果、反応はH.Nu
へのPdlO)の酸化的付加、}1-Pd(II)=Nu活性種の生成、2重結合へのhydropaIladationまたは
carbopalladatlon、最後にPd(0)種の還元的脱離によって進行することが判明した。また、H.Nu
の2重結合への付加の位置選択性はアレンの置換基によって大きく左右されることが明らかになっ
た。モノ置換またはジ置換アルキ,レアレンではγ付加体が、パラ位に電子吸引基をもつフェニル
置換アレンではβ付加体を、アルコキシ及びフェノキシ置換アレンではα付加体を、アルキルチ
オ置換体ではγ付加体を与えることが判明した。この新反応により、各種官能基を有するオレフ
ィンを容易に合成できるようになり、有機合成上有用な新手法を開拓したことになる。
これ等の研究成果は博士論文として適当であり、本人が自立して研究活動を行うに必要な高度
の研究能力と学識を有することを示している。よって、MohammadAl-Masum提出の論文は、博
士(理学)の学位論文として合格と認める。
ノ
一305一
人