x - Repetita

Teorema del Confronto (esercizio 1)
Esercizio
Calcolare il seguente limite utilizzando il Teorema
del Confronto
lim x  2  senx  log x
Soluzione
lim x  2  senx  log x
 1  senx  1
 1  2  senx  2  1  2
log x  senx  2  log x  3 log x
lim x  log x  
lim x  3 log x  
Considero la
disuguaglianza
Aggiungo 2
Moltiplico per logx
Calcolo i limiti per
x→+∞ di logx
g e 3logx
g
1
Soluzione
lim x  2  senx  log x
lim x   2  senx  log x  
Applico il confronto.
Finito!
2