セラミックス 第10回 6月24日(水) セラミックスの物性② 補足: 1. アルミナセラミックス・・・酸化物セラミックスの代表 特徴:セラミックスの中で最も使用量が多く、かつ古い歴史をもつ代表的材料 (・・・1930年,ドイツ・ジ-メンス社による自動車用スパ-クプラグ の絶縁体が最初の実用材料) 主要機能特性[:図1,図2,表1,図3参照] :①電気・電子的機能,②機械的機能,③熱的機能, ④生物・化学的機能, ⑤光学的機能 図1 アルミナセラミックスの特性と用途 図2 アルミナセラミックスの 高温強度 図3 アルミナセラミックスの 絶縁特性 表1 アルミナセラミックスの構造特性 高純度かつ 微粒が最良 応用例 :①電気・電子的機能・・・電気絶縁性(ex.スパ-クプラグ,IC基板, ICパッケ-ジ)[:図4,図5参照] ②熱的・機械的機能・・・高温高強度特性,耐摩耗性(ex.切削用工具, エンジン用材料) ③透光性機能・・・:単結晶Al2O3(サファイヤ・・・ex)人工宝石、腕時計用ガラス) :高圧Naランプの発光管,高温用赤外線検知用窓材料 : 単結晶Al2ーxCrxO3(x=0.00067,ルビ-) ・・・固体レーザー発振素子(ルビー・レーザー) ④生物・化学的機能・・・生体用材料(耐食性,機械特性,生体適合性良好) 図4 スパ-クプラグの構造 図5 アルミナ製IC基板とICパッケージ 2. ジルコニアセラミックス ZrO2:1100℃で結晶変態(低温:単斜晶→高温:正方晶) ↓ 数%の容積変化の発生(亀裂発生に伴う自己破壊の誘発) ↓ ∴安定化剤の添加(CaO,MgO,Y2O3を数%~数十%添加) ・・・室温で立方晶を呈し、高温での結晶変化がない 『安定化ジルコニア(Stabilized Zirconia)』 ・・・Zr4+とCa2+,Mg2+,Y3+の置換によって結晶格子中に酸 素イオンが不足し、酸素イオンの伝導体(=『固体電解質』)と して応用→各種酸素センサ素子[:図6,図7,図8,図9参照] ↓ 『部分安定化ジルコニア(PSZ:Partially Stabilized Zirconia)』 ・・・正方晶ZrO2(高温安定相),あるいは正方晶ZrO2+立方 晶ZrO2(安定化ZrO2)の混在構造 :強靱,高強度セラミックス材料 [機構]:PSZセラミックスに外力が加えられた場合、正方晶 構造が単斜晶構造に相転移して、外力を相転移時の 駆動エネルギ-として吸収する PSZ ∴『結晶転移による強化機構』 :高温・高強度 ・・・TTZ(Transformation Toughened Zirconia) 構造材料 特徴:①高強度,高靭性[:図10参照] ②熱伝導率は小さく(断熱性良好) 熱膨張係数は金属に近い[:図11参照] Y3+:結合手が3つ O2-のホールを介した イオン伝導 (・・・結晶中を移動) Zr4+:結合手が4つ O2-: 〃 が2つ 図6 Y2O3添加による ZrO2の安定化(単斜晶 から立方晶型への相転移) 図7 安定化ZrO2固体電解質を用いた 図8 自動車用排気ガス用 酸素センサの酸素濃度と起電力の関係 酸素センサ素子の構造 E=55.7log10PR/PM (E:起電力,PR:大気中の酸素濃度,PM:被測定ガスの酸素濃度 ex) 排気ガス中のCOまたはCO2濃度) E(O2-のイオン伝導によって生じた起電力) = 55.7log10 PR(大気中のO2量) PM(測定ガス中のO2量) 図9 ZrO2セラミックス用途 図10 部分安定化ZrO2(PSZ)の強度と破壊靭性(K1C) 図11 部分安定化ZrO2(PSZ)の熱伝導率と熱膨張係数 電気・電子・磁気的特性 (1)サ-ミスタ(thermistor)*)[:図4.7参照]特性 [定義]:温度により材料の電気抵抗値が変化する性質 (温度調整、測定用の温度センサー用素子) ①CTRサ-ミスタ(critical temperature controler):臨界温度サ-ミスタ ②NTCサ-ミスタ(negative temperature controler) ③PTCサ-ミスタ(positive temperature control thermistor) *) thermistor (:thermally sensitive resistor) 電気抵抗の特異な温度依存性を利用して、 材料の電気抵抗を測定することにより温度 を検出するセンサー素子 図4.7 3種類の代表的サ-ミスタ の電気抵抗の温度依存性 ①CTRサ-ミスタ:結晶の構造変化が生じる相転移点で抵抗が急激に低下する材料 V2O5:80℃以下(単斜晶系)では抵抗が負の温度係数を持った半導体 80℃以上(ルチル構造:正方晶系)では電気伝導度が2ケタ以上増加 (抵抗が急激に減少)し、金属的挙動[温度の増加につれ抵抗は増加する ・・・抵抗:正の温度係数]を示す 応用:温度スイッチなどの各種センサ材料 ②NTCサ-ミスタ:抵抗が温度上昇に伴って単調(指数関数的)に減少する材料 (CTRサ-ミスタとは異なり、相転移には無関係) 不純物注入型遷移金属酸化物(Fe2O3-Ti系,NiO-Li系), ZrO2-Y2O3系,SiCなど 応用:ダイオ-ド,ヒュ-ズ,各種温度スイッチ類など ③PTCサ-ミスタ:相転移点で抵抗が急激に上昇する材料(NTCサ-ミスタとは 異なって、抵抗は温度上昇に伴って増加し、かつCTRサ-ミスタ同様, 結晶の相変化に起因する) ・・・正方晶-立方晶変態に伴う抵抗変化 応用:電圧異常と回路の短絡保護材料・・・大電流が流れると、サ-ミスタの温度 が上昇し,抵抗値が増加し電流量を低下させる サーミスタ(Thermistor, Thermally sensitive resistor)の種類 (1)NTCサーミスタ(Negative Temperature Coefficient) :温度が上昇すると抵抗値が連続的に減少する (2)PTCサーミスタ(Positive Temperature Coefficient) :温度が上昇すると特定の温度以上で抵抗値が 急激に増加するサーミスタ (3)CTRサーミスタ(Critical Temperature Thermistor) :温度が上昇すると抵抗値が急激に減少する ※NTCサーミスタ(温度制御用センター素子として多用)の 温度と抵抗値の関係式 1 1 B( ) T T0 R R0 exp R:温度Tにおける抵抗値 T:温度(K) R0:基準温度T0における抵抗値 T0:基準温度(K) (一般に25℃(=298K)を使用) B:定数 [身近な用途] 電子体温計、冷蔵庫、冷凍庫、エアコンの制御用温度センサー (その他:OA機器、カーエアコン、自動車エンジン用温度計(センサー) (2)バリスタ(variable resister)特性 [定義]:電流-電圧特性が非直線的なセラミックス半導体材料 ※V=IRに従わない (電圧が増加すると抵抗が急減し、非オ-ム則を示す材料) [:図4.8,図4.9参照] ・・・低電圧ではバリスタは温度依存性が小 さいが、ある臨界降伏電圧VBで突然 抵抗値が消失し電流が急激に増加する 図4.8 ZnOバリスタの 典型的なI-V特性 (電流はVBで急速に増加) 図4.9 ZnOとSiCのバリスタ特性 用途:①整流器で発生する異常電圧から、回路素子を保護 ②落雷,高電圧の流入による電気回路の破壊防止用 (3)誘電体特性[:図4.10参照] :絶縁体と同等な挙動をとるが、電界を印加した場合に定常電流は流れないが、 電荷を蓄積できる特性(コンデンサー特性)を有する材料[:図4.11,図4.12参照] ①常誘電体:誘電率の低い物質[:BaTiO3の高温相(立方晶型)] ②強誘電体:外部電界によって双極子モ-メントが整列することによって自発分極が 発生し、かつ自発分極の方向が変化できる物質 [:BaTiO3の低温相(正方晶型)] ③反強誘電体:自発的な双極子の配列が結晶内で平行になるよりも、反平行になる方が 安定な物質[:ジルコン酸鉛(PbZrO3)] 図4.10 電界を印加した時の誘電体の分極モデル A C F t :誘電率 A:電極面積 t :電極間距離(誘電体の厚さ) 図4.11 BaTiO3の結晶構造 図4.12 BaTiO3の誘電率の 温度依存性(εa:a軸方向の誘電率, εc:c軸方向の誘電率) 補足: BaTiO3,SrTiO3セラミックス 高誘電率材料,強誘電体材料の代表・・・小型大容量のセラミックスコンデンサの開発 [:図1,図2,表1参照] 図1 BaTiO3,SrTiO3セラミックス材料の応用分野 図2 BaTiO3セラミックスの比誘電率ε/ε0と誘電損失tanδ の温度特性 ・・・コンデンサの静電容量C : C=ε・A/t[F] εs:比誘電率(εs=ε/ε0,ε:誘電率) ε0:真空中の誘電率(8.854×10-12[F/m]) A:電極面積[m2], t:セラミックス素子の厚さ[m] 比誘電率が大きいほど、同一形状での大容量のコンデンサとなる (→同一容量のコンデンサを小型化できる) 表1 アルミナ,ジルコニア,チタニア(TiO2)とBaTiO3, SrTiO3セラミックスの結晶構造 (4) PZTセラミックス Pb(Zr,Ti)O3セラミックス[:図4.13参照] ・・・圧電性セラミックスの代表的材料 基本機能(・・・電気-機械変換素子)[:図4.14,表4.4参照] :①圧力→電気 ②電気→振動・変位 ③電気→振動→電気 図4.13 Pb(Zr,Ti)O3セラミックス [:PZT]の応用例 図4.14 圧電セラミックスの3種類の基本的機能 表4.4 PZTとBaTiO3セラミックスの圧電特性の比較 B aTiO 3 材 質 P ZT P ZT 材 料 名 M T-107* 67 71 2000 M T-18* 55 65 1400 1900 -213 -104 -79 450 300 191 g31 -12.7 -8.4 -4.7 g33 25 24 11.4 ヤング率 Y 11E 6.3 8.1 9.3 [1010N /m 2] 機械的品質係数 キュリー点 密 度 Y 33E 電気機械結合係数 圧 電 定 数 k p[%] k t[%] 比誘電率 ε33T/ε0 d31 -12 [10 m /V ] d33 -3 [10 V m /N ] Qm [℃] [g/cm 3] 主 な 特 徴 主 な 用 途 35.4 4.7 6.3 9.2 100 1000 430 354 300 120 7.7 7.6 5.7 高い圧電特性 高い圧電特性 低いQ m 高いQ m ソフトな材料 ハードな材料 ガス点火器 超音波振動子 魚探用振動子 (5) 磁性体セラミックス フェライト,酸化鉄セラミックス[:図4.15,表4.5参照] 軟磁性材料(ソフト) (ex.磁気ヘッド材料) 半硬磁性材料 (セミハード) (ex.磁気記録材料) 硬磁性材料(ハード) (ex.永久磁石) 図4.15 磁性体セラミックス (フェライト,酸化鉄セラミックス)の用途 表4.5 代表的な鉄酸化物系化合物 物 質 結晶系 系 性 色 相 α-Fe2O 3 γ-Fe2O 3 α-FeO O H (α-Fe2O 3・ H 2O ) Fe3O 4 Fe(Fe2O4) M nFe2O 4 C oFe2O 4 N iFe2O 4 ZnFe2O 4 六方晶 立方晶 直方晶 非磁性 強磁性 非磁性 赤褐色 茶 色 黄 色 X線密度 [g/cm 3] 5.29 5.07 4.28 立方晶 立方晶 立方晶 立方晶 立方晶 強磁性 強磁性 強磁性 強磁性 非磁性 黒 色 黒 色 黒 色 黒 色 赤褐色 5.24 5.00 5.29 5.38 5.33 六方晶 六方晶 強磁性 強磁性 黒 色 黒 色 5.28 5.15 特性良好 (永久磁石) B aFe12O 19 SrFe12O 19 BaO・6Fe2O3 SrO・6Fe2O3 鉱物名 備 考 Hα-Hematite eam atite Mγ-Hematite aghem ite G oethite 赤鉄鉱,ベンガラ ガンマ 針鉄鉱,黄鉄 M agnetite (Jacobisite) 磁鉄鉱,黒鉄 磁鉄鉱,鉄黒 マンガンフェライト コバルトフェライト ニッケルフェライト 亜鉛フェライト,タン (顔料) バリウムフェライト ストロンチウムフェライト (Trevorite) (Flanklinite) フェライトの一般式:M・Fe2O4・・・M:2価の金属イオン (M = Mn, Ni, Zn, Ba, Sr,・・・) **酸化鉄、(磁性体酸化鉄)・・・Fe3O4:マグネタイト 「主な用途」: ①ビデオテープ用磁性体 磁気記録用磁性体粉末 ②音声録音(カセットテープ)用磁性体 ③モータ回転用マグネット(ex.PC用ハードディスクドライブモーター) ④スピーカー用マグネット 現在:CD,MO,MD(光磁気記録用メディア材料 (※ ビデオテープ、フロッピーディスクは全てγ-Fe2O3粉末を使用)
© Copyright 2024 ExpyDoc