Atomic Layer Deposition: Geschichte, Grundlagen und Innovative Anwendungen Atomic Layer Deposition Sequential, self-limiting gas-solid surface reactions. Knez, Nielsch and Niinistö, Adv. Mater. 19, 3425 (2007) Video by S. Martens (IAP) 2 CVD vs. ALD CVD When the precursor molecule reaches the substrate, it decomposes immediately and it is coated rapidly by the following molecules. ALD Controlled, slow, layer-bylayer deposition from two species of precursor molecules. 3 CVD vs. ALD • • • • • • Diffusion controls the growth rate Deposition rates > 0,1 µm / min Roughness > 1 µm Temperature T = 400-800°C Mostly crystalline Structures Suitable only for planar substrates • • • • • • Chemistry controls the growth rate Deposition rate < 0,1 nm / min Roughness < 1 nm Temperature T 100-300°C Amorphous Structure Suitable for complex Geometries 4 ALD Window The Periodic Table of Elements Miikkulainen et al., J. Appl. Phys. 113, 021301 (2013) 6 History of ALD • Beginning of 90ths: Common name was atomic layer epitaxy (ALE). • Pioneer of ALD: Dr. Tuomo Suntola – Development of ZnS process for in the early 70th‘s. • First (industrial) application: Electroluminescent displays used at the Helsinki airport until 1998. 7 History of ALD II • Parallel to Finish activities, Aleskovski and Kol’tsov worked on “molecular layering reactions” in the former Soviet Union. • Open online-project to unveil the history and roots of ALD: http://aldpulse.com/node/189 Conference: 14th Int. Conf. on Atomic Layer Deposition, At Kyoto, Japan 8 The Global Push of ALD: high-k Dielectrics • Miniaturization of electronic devices • Isolation layer of gate electrodes in MOSFETs (field-effect transistors) has reached a few nm • SiO2 Layer can not be controlled sufficiently • Controlled method for the deposition of thicker oxide layers with a high dielectric constant Prototype of a Commercial Reactor Cambridge NanoTech Inc. Investment Costs ALD Reactor Development 2005 2010 Development of Price Future in our Lab Development of Price 2010 Future A Look in Our ALD Lab Material Precursor T/ C Al2O3 TMA, H2O RT – 300 SiO2 APTES, H2O, O3 120 – 300 ZnO Diethyl Zink, H2O 80 – 250 MgO Mg(CpEt)2, H2O 125 – 300 NiO Nickelocen, O3 200 – 300 CoO Cobaltocen, O3 200 – 300 Fe2O3 Ferrocen, O3 200 – 300 Ni Ni(dmamb)2, NH3 250 Co Co(iPr-AMD)2, NH3 250 Y2O3 Y(MeCp)3, H2O 200 ZrO2 TEMAZr, H2O 200 TiO2 Ti Isopropoxid, H2O RT –300 CoxFe3-xO4 Cobaltocen, Ferrocen, O3 250 – 300 NixFe3-xO4 Nickelocen, Ferrocen, O3 200 – 300 NixCo3-xO4 Nickelocen, Cobaltocen, O3 250 – 300 Sb (Et3Si)3Sb, SbCl3 120 SbTe2 (Et3Si)2Te, SbCl3 85 – 120 13 Different Reactor for Different Application Batch reactor Plasma-ALD Spatial ALD Direct-write Roll-to-roll Time domain Spatial domain Kessels and Putkonen, MRS Bulletin 36, 907 (2011) 15 Drum Reactor for Nanoparticle Coating Powder + ALD Coating Spark Plasma Sintering Nanostructured Bulk PhD thesis Sebastian Zastrow Master thesis Julia Gemmer 16 ALD on Thermoelectric Nanoparticles Electron microscopy reveals conformal coating of particles 1 µm 200 nm Al2O3 thickness influences TE bulk properties PhD thesis Sebastian Zastrow Master thesis Julia Gemmer 17 Supercycle ALD for Ternary Materials Alternating ALD cycles can lead to ternary materials. A few examples: NixFeyOz CoxFeyOz SrxTiyOz GexSbyTez ITO, ZTO YSZ High-k materials precursor 1 precursor 2 precursor 3 18 Ternary Materials: Tailor-Made Properties nickel/ cobalt ferrite ZnSnOx Adjusting energy band levels Chong, Nielsch et al., Chem. Mater. 22, 6506 (2010) Kapilashrami et al., Phys. Chem. Chem.Phys. 14,10154 (2012) 19 An Example: SnZnOx in CIGS Solar Cells ALD is used to engineer the electrical junction properties of the solar cell diode. Solar cell efficiency depends on stoichiometry in buffer layer. Lindahl et al., Prog. Photovoltaics Res. Appl. 21, 1588 (2013) Hultqvistet al., Prog. Photovoltaics Res. Appl. 20, 883 (2012) 20 ALD of Nanoparticles Supercyclic ALD of Ru(DER), Pt(MeCp)Me3 and O2 leads to Ru-Pt-alloy nanoparticles… Nucleation delay by film growth due to different surface energies can be used to deposit nanoparticles. …revealing higher thermal (catalytic) conversion of methanol than a mixture of pure metallic particles. Christensen et al., Nano Lett. 10, 3047 (2010) Kim et al., Thin Solid Films 517, 2563 (2009) 21 Field-Effect Devices Nanochannels - Ionic FET MOS/FIN-FET 250 nm 250 nm 100 nm 250 nm Nam et al., Nano Lett. 10, 3324 (2010) Johnson et al., Mater. Today 17, 236 (2014) 22 Ferrofluidic Suspensions 23 High-Aspect Ratio Templates ALD Tailor-Made Nanotubes: • Material • Diameter • Length • Wall Thickness PhD thesis Robert Zierold Zierold, Nielsch et al., Adv. Funct. Mater. 21, 226 (2011) Zierold, Nielsch et al., Phys. Status Solidi B 247, 2412 (2010) 24 Nanotube Ferrofluids PhD thesis Robert Zierold 25 Zierold, Nielsch et al., Adv. Funct. Mater. 21, 226 (2011) Zierold, Nielsch et al., Phys. Status Solidi B 247, 2412 (2010) Magnetoviscosity Same MVE response in a ten times more diluted liquid nanotube suspension compared to a commercial ferrofluid, BUT higher sensitivity at lower magnetic fields. PhD thesis Robert Zierold Zierold, Nielsch et al., Adv. Funct. Mater. 21, 226 (2011) Zierold, Nielsch et al., Phys. Status Solidi B 247, 2412 (2010) 26 Hybride Ferrofluids + Hybrid suspensions consisting of nanotubes and commercial spherical nanoparticles reveal drastically increased magnetoviscous effects and might pave a way towards industrial applications. PhD thesis Robert Zierold Zierold, Nielsch et al., in preparation (2014) 27 Electrocatalytic Water Splitting Synthesis Scheme Iron oxide is a low-cost, biocompatible material which can act as catalyst. ALD allows for Synthesis of High Surface Area Catalyst flat substrate Gemmer et al., J. Catalysis 290, 220 (2012) 28 Photonic Crystals for TBC (Thermal Barrier Coating) Broadband Reflector im NIR Temperature Decrease by 13 °C at a Working Temperature of >1000 °C Life-time doubling d2 = 756 nm d1 = 608 nm Detailed Information at Poster (Dr. Robert Zierold) Kelly, M et al., Int. J. Appl. Ceram. Technol. 3, 81 (2006) Zierold, Nielsch et al., J. Opt. Soc. Am. B 29, 450 (2012) Zierold, Nielsch et al., J. Am. Ceram. Soc. 95, 2226 (2012) Zierold, Nielsch et al., Optical Materials Express 3, 1007 (2013) 29 Introduction: Topological Insulator Cartoon: Dirac dispersing surface states lying in the bulk band gap Energy and momentum dependence of the local density of states on the [111] surface. Here, the warmer colours represent higher local density of states. Sb2Te3 Bi2Se3 Bi2Te3 H. Zhang et al., Nature Physics 5, 438 (2009). ALD of Thermoelectric Materials SbCl3 + (Et3Si)2Te Sb2Te3 31 PhD thesis Sebastian Zastrow Zastrow, Nielsch et al., Semicond. Sci. Technol. 28, 035010 (2013) Thermoelectric Properties of ALD Thin Films Thickness Dependence Decreasing film thickness Seebeck Coefficient decreases continuously Conductivity behaves non-monotonically. PhD thesis Sebastian Zastrow Zastrow, Nielsch et al., in preparation (2014) 32 Topological Surface States Indications for TI surface states PhD thesis Sebastian Zastrow Zastrow, Nielsch et al., in preparation (2014) 33 Thickness Dependence – 2 regimes Bulk Carrier Surface Bulk Surface Thickness dependence: t < 72: sigma ~ 1/t Thickness dependence: t > 72 nm: sigma ~ t TMR Devices ALD is ideally suited to prepare ultra-thin, pin-hole free films. A prerequisite for tunnel barriers: Results are comparable to (first) sputtered film. New emerging field (only few publications): Al2O3, MgO, HfO2 Liu et al., Appl. Phys. Lett. 102, 202401 (2013) Mantovan et al., J. Phys. D: Appl. Phys. 47, 102002 (2014) Zierold, Nielsch et al., submitted to Appl. Phys. Lett. (2014) 35 Water Diffusion Barrier for Organic Devices 80°C, 80 % humidity Water Vapor Transport Ratio at ambient conditions: 8E-7 g/(m2 d) close to industrial requirements Groner et al., Appl. Phys. Lett. 88, 051907 (2006) Meyer et al., Adv. Mater. 21, 1845 (2009) Meyer et al., Appl. Phys. Lett. 96, 243308 (2010) 36 ALD (Extreme) on Biological Templates I Filling the inner channel of a tobacco mosaic virus. Length: 300 nm outer Ø : 18 nm inner Ø : 4 nm Knez et al., Nano Lett. 6, 1172 (2006). 37 ALD on Biological Templates II Coating/ Infiltration of Spider Silk ALD can be used to significantly enhance the strain (stress) curves. 2009 Apr 24;324(5926):488-92 Lee et al., Science, 324, 5926 (2009) 38 ALD for Improving Battery Performance ALD of ultra-thin Al2O3-layers on LiCoO2 electrodes Improved retention of capacity vs. charge/discharge cycle number. • • Suppress structural instabilities related to lithium insertion and desertion. Act as solid electrolyte and prevent direct contact between cathode surface and electrolyte. Jung et al., J. Electrochem. Soc., 157, A75 (2010) 39 Pt ALD for Solid-Oxide Fuel Cells Pt can act as catalyst to allow for reduction of working temperature by retaining the fuel-cell performance. Largest boundary density improves SOFC performance by about 90 %. NP growth Coalescence of NPs optimal closed Pt-film 400 °C Chao et al., Adv. Energy Mater., 2, 651 (2012) 40 YSZ ALD for Solid-Oxide Fuel Cells Yttria-Stabilized Zirconia deposited by supercyclic ALD acts a electrolyte in SOFC. Nanocrystalline ALD membranes show 4 orders of magnitude enhanced exchange-current density compared to reference (bulk >100 µm) membrane. Chim et al., Chem. Mater., 19, 3850 (2007) 41 Cathode Passivation in SOFC by ALD Cathode material La0.6Sr0.4CoO3-δ (LSCo) coated with ZrO2 Overcoated samples show compared to pure SOFC‘s cathode: • time-dependent stable (small) polarization area-specific R • 18times reduced degradation Gong et al., Nano Lett., 13, 4340 (2013) 42 Spatial ALD for Solar Cell Passivation A Proof-Of-Principles 150 mm wafer ( 30 mm wide track) Literature value (for „standard“ ALD) • Deposition rate: 1.2 nm/s. • Lifetimes of 5 ms for minority carrier densities of 1015 cm-3 (corresponding to surface recombination velocity <2 cm/s). Comparable to state-of-the-art. Poodt et al., Adv. Mater., 22, 3564 (2010) 43 Nanopatterning by ALD 1 2 3 Mackus et al., Nanoscale DOI:10.1039/c4nr01954g (2014) 44 Nanopatterning by ALD 1 2 3 Mackus et al., Nanoscale DOI:10.1039/c4nr01954g (2014) 45 Nanopatterning by ALD 1 2 3 Mackus et al., Nanoscale DOI:10.1039/c4nr01954g (2014) 46 Selective ALD on OTMS-Functionalized Al2O3 Nanopores 3D Metal/Oxid Nanostructures based on ALD TiO2 coated Tobacco Mosaic Virus Core-Shell Magnetic Nanowires Ø54 nm Ni core 25 nm SiO2 Ø54 nm Ni core M. Knez et al., Nano Lett. 6, 1172 (2006). 1825nm nm Fe SiO32O4 nm Fe3O4 518nm SiO2 5 nm SiO2 Ni und Co Nanotubes M. Daub et al, J. Appl. Phys. 101, 09J111 (2007). C.Y. Chong et al, Adv. Mater. 22, 3170 (2012) Collaboration with Prof. M. Eich (TU-Harburg) Danksagung - Acknowledgements Gruppe Nielsch – IAP, Universität Hamburg We gratefully acknowledge financial support via the German Priority Programs DFG-SPP 1386 nanoTE and DFG-SPP 1538 SpinCat.
© Copyright 2024 ExpyDoc