cZィハy ] g Yツe 加 ノ{ µZサ ソ 麺Y { カキM ハー軽 澗e チ

cÔ£ cZ¬Ì¬ve
(1-15) 1391 /µÁY ÃZ¼‹ /¹Á{ µZ‡
µZ»€¿ –ËY€‹ { ¶·MÉ{ ‰Á Z] ½Z¿ ¹|À³ { cZ¨ Êy€] gYÂe Ä ·Z˜»
Ê°Œy ŠÀe Á
2
Zf¼ÅÊ] Z“|¼v» Á 1É{Z]M¦n¿¶“Z§ É|Æ» ,Ï1ÊÀ̌»Y ʸ À̈u
†Ë{€a cZeZ^¿ sԏY Á dŸY ÃÁ€³ {Zf‡Y -2 , ½Y€Æe ÃZ´Œ¿Y{ ½ZvËÂ]Y †Ë{€a cZeZ^¿ sԏY Á ʟY ¹Â¸Ÿ ÃÁ€³ ZË{Zf‡Y -1
½Y€Æe ÃZ´Œ¿Y{ Ê Ì^— ž]ZÀ» Á ɁÁZŒ¯
(1391/8/9 :‰€Ë~a xËZe -1391/5/16 :d§ZË{ xËZe)
Ã|Ì°q
Y Ê°Ë .d‡Y ®Œy –ËY€‹ { {€°¸¼Ÿ ŠÅZ¯ Y ɀ̳¸m ÉY€] ZÅÃY ¾Ë€e|»MZ¯ Y Ê°Œy ŠÀe Ä] ¶¼ve ÉY€] sԏY
½Z¿ ¹|À³ `Ìe¿ƒ d¨Å ,ŠËZ»M ¾ËY { .d‡Y ¶·MÉ{ ‰Á ÊuԏY Ä»Z¿€] Á€‹ Y ¶^« Ê°Ìf¿ƒ {Y» Ê]ZˁY ÉZʼnÁ ¾Ë€fÆ]
Á µZ»€¿ –ËY€‹ { ZÅF1 Á ¾Ë|·YÁ .|¿|‹ Ã{Y{ Ê«Ôe ħ€— ®Ë ¶·MÉ{ s€— c Ä] Šz] |Ì»Y ÉZžËÓ Á ʼË|« ¹Z«Y ¶»Z‹
ɀ̳ÁY|¿Y Ä¿Y{ {€°¸¼Ÿ Á ®ËƒÂ·Â§€» ,®ËƒÂ·ÂÀ§ cZ¨ Á dŒ¯ Y€°e ć Z] ʧ{Ze ¶»Z¯ ÉZŭ¸] s€— \·Z« { ŠÀe
€iY {ÂmÁ Y ʯZu Á Ã{Â] Y{ÊÀ » cZ¨ Ê»Z¼e ÉY€] ¾Ë|·YÁ ʻ¼Ÿ ɀË~a \̯€e į {Y{ ½ZŒ¿ ¶·MÉ{ †¿ZËYÁ Ä˂ne .|¿|‹
®¼¯ Z] .{Â] Ä̬] Y €fÆ] d¨ |Àq ZË ®Ë €œ¿ Y `Ìe¿ƒ €Å į {Y{ ½ZŒ¿ lËZf¿ .{Â] cZ¨ Ê»Z¼e µ€fÀ¯ { Y{ÊÀ » ʌËY‚§Y
Är¸^À‡ {Y| e ÉY€] .|¿|‹ ÊËZ‡ZÀ‹ ,|Àf‹Y{ ÊËÓZ] ʏy ɀË~a \̯€e ¦¸fz» cZ¨ ÉY€] į ÊÀË|·YÁ ,cÔa ÉZ] Ä˂ne
WS-82-9 Z] 2}M Á Y€Ì‹ Z] ÉY{€‡ ,Y€Ì‹ Z] €Ë¯ ÉZÅ`Ìe¿ƒ \Ìe€e Ä] Ä¿Y{Y‚Å ½Á Á ÃZ̳ { ċÂy {Y| e ,ċÂy {
ÉY€] dÌ^·Z£ -ʌËY‚§Y µ|» dËZ¨¯ Y ½ZŒ¿ ‚°ÀÌm Á €f» ‰Á Z] ʰ̧Y€³ Ä˂ne .|Àf‹Y{ Y ʏy ɀË~a \̯€e ¾Ë€eÓZ]
.d‡Y Ê^ˆ¿ dÌ^·Z£ c Ä] ½ƒ ¶¼Ÿ Ã|ÀÀ¯ ½ZÌ] į {Â] ®Ë Á €¨ ¾Ì] cZ¨ €fŒÌ] { dÌ^·Z£ Äm{ .d‹Y{ cZ¨ €fŒÌ]
Ä] sԏY ÉY€] Ê°Ìf¿ƒ ž]ZÀ» ½YÂÀŸ Ä] ½YÂeÊ» €Ë¯ Á ÉY{€‡ ,WS-82-9 |À¿Z» ÊËZÅ`Ìe¿ƒ Y ,Ã|»M d‡{ Ä] lËZf¿ …Z‡Y €]
½YÂÀŸ Ä] WS-82-9 `Ìe¿ƒ ¾ÌÀr¼Å .{€¯ Ã{Z¨f‡Y –ËY€‹ Á{ €Å { Är¸^À‡ {Y| e Á ċÂy {Y| e ,Ä¿Y{Y‚Å ½Á cZ¨ \Ìe€e
.|‹Z] ŠÀe –ËY€‹ ÉY€] Ê^‡ZÀ» `Ìe¿ƒ |¿YÂeÊ» Šz] |Ì»Y ¾ËÓ ®Ë
ʏy ɀË~a diYÁ ,½ƒ ¶¼Ÿ ,ʏy Á ʻ¼Ÿ ɀË~a\̯€e :É|̸¯ ÉZÅÃYÁ
[email protected] :µÂXˆ» Ã|ÀˆË¿ ̅
¶·MÉ{ ‰Á Z] ½Z¿ ¹|À³ { cZ¨ Êy€] gYÂe Ä ·Z˜» :½YZ°¼Å Á ÊÀ̌»Y
į ÊeÁZ¨f» [¸˜» cZ¨ ½YÂf] Ze |¿Â‹ [Zzf¿Y Ê«Ôe
ÃZ̳ ®Ë Ä] Y |À‹Z] Äf‹Y{ {ÂmÁ |·YÁ Á{ { d‡Y ¾°¼»
{» { ɀ̳ºÌ¼e Ä°ÀËY ÉY€] ,¾ÌÀr¼Å .{€¯ ¶¬fÀ»
ÊuԏY ‰Á Á Ã|‹ ¹Zn¿Y Êf‡{ Ä] ÄÌ·ÁY ÊuԏY {Y»
ZfyZ‡ {» { ÊeZŸÔ—Y d‡Y ¹Ó ,{‹ [Zzf¿Y \‡ZÀ»
.(Khan et al., 2010) |ËM d‡{ Ä] cZ¨ Ê°Ìf¿ƒ
€] ½YÂeÊ» į |¿Y{ {ÂmÁ ÊeÁZ¨f» Ê°Ìf¿ƒ ÉZÅÄ˂ne
‚Ì¿ Á ÊuԏY {Y» ¾Ì] { Ê°Ìf¿ƒ ÂÀe {ÂmÁ Y ZÆ¿M …Z‡Y
.d§ZË ÊÅZ³M €œ¿ {» cZ¨ {» { ¾Ë|·YÁ ¶Ìˆ¿Zfa
Jinks, ) ¾¼ÌÅ Á ²Ą̀ˀ³ ,‚°ÀÌm –‡Âe į ¶·M É{ ‰Á
,|‹ ʧ€ » (1954; Griffing, 1956; Hayman, 1960
ÉZŀf»YZa ,‰Á ¾ËY { .d‡Y ZʼnÁ ¾ËY ¾Ë€fÆ] Y Ê°Ë
¾ËY .|¿Â‹Ê» Ã{ ¾Ì¼ze Ê«Ôe ¶ˆ¿ ®Ë Y | ] Ê°Ìf¿ƒ
†¿ZËYÁ ÉY‚mY {» { É|À¼‹Y cZŸÔ—Y |¿YÂeÊ» ‰Á
¾ËY Y .{Y~´] ZÌfyY { Y‚mY Y ®Ë €Å ʳ‚] Á Ê°Ìf¿ƒ
Ã{Z¨f‡Y É{Zˁ cZ¨ Ê°Ìf¿ƒ …Z‡Y Ä ·Z˜» ÉY€] ‰Á
Mohammadi et al., 2007; Mohammadi ) d‡Y Ã|‹
and Emami, 2008; Abate and McKendry, 2010;
¶Ì·{ Ä] .(Zare et al., 2010; Gorny et al., 2011
cZ¨ sԏY ÉY€] ¾Ë|·YÁ ÊËZ‡ZÀ‹ ÉY€] ‰Á ¾ËY Ä°ÀËY
‚Ì¿ ½Z¿ ¹|À³ { ,d‡Y žË€‡ Á |»MZ¯ Z̈] ½ZÅZ̳ {
Dere and ) d‡Y Ã|‹ Ã{Z¨f‡Y ½M Y ¾Ë|·YÁ ÊËZ‡ZÀ‹ ÉY€]
ÉZÅÄfËYÁ {Â^Æ] { ĸu€» ¾Ë€f¼Æ» .(Yildirim, 2006
,¹|À³ ÊuԏY ÉZÅÄ»Z¿€] { Ê]M º¯ –ËY€‹ Ä] Z³Z‡
.d‡Y ¾Ë|·YÁ [Zzf¿Y
¾Œ³{Ây ½ZÅZ̳ { †ËÁ€fÅ Y ÉY{ÊÀ » s˜‡
€Å ÊËMZ¯ ½Y‚Ì» Z] ®ÌeÁ€fÅ €iY ʳ‚] .d‡Y Ã|‹ ‰Y‚³
Ä°ÀËY Ä] ÄmÂe Z] .{‹ʻ ŽzŒ» ZÅ|ˀ^ÌÅ Á |·YÁ Á{
€´Ë{ –Ìv» Ä] ʘÌv» Y ¾Ë|·YÁ {€°¸¼Ÿ d‡Y ¾°¼»
|‹Z] ¾ÌÀq d‡Y ¾°¼» ‚Ì¿ †ËÁ€fŠʳ‚] ,|‹Z] cÁZ¨f»
ŠËZ»M ¹Zn¿Y ,¾ËY€]ZÀ] .(El-Maghraby et al., 2005)
Ê]Ây cZŸÔ—Y |¿YÂeÊ» µZ»€¿ Á ŠÀe –ËY€‹ Á{ { ¶·MÉ{
{€°¸¼Ÿ ŠËY‚§Y .|Å{ ½ZŒ¿ –Ìv» Z] ½ƒ €iY ŠÀ¯ºÅ€] Y
ÊËZÅʳ„ËÁ .|‹Z]Ê» ºÆ» d¨ ¾Ë|Àq Y Ê ]Ze ¹|À³
Á ÄnÀa {Y| e ,ÄeÂ] Z¨eY ,½M ÉY‚mY Á Ä¿Y{ {€°¸¼Ÿ |À¿Z»
¹|À³ { ŠÀ˂³ ÉZÅZÌ » ¾Ë€f¼Æ» Y d‹Y{€] ŽyZ‹
ÉZÅÄnÀa ,|À¸] ¶ÌfaÂX·Â¯ ,ÊÅZe¯Za |À¿Z» ÊeZ¨ .|ÀfˆÅ
2
Ä»|¬»
Šz] ÉY€] ¾ÌXeÁ€a Á Ƀ€¿Y ʸY ž^À» ½Z¿ ¹|À³
{ ʟY ÃZ̳ ¾Ë€f¼Æ» Á Ã{Â] ½ZÆm dÌ ¼m Y ʳ‚]
ZÌ¿{ €‡Y€‡ { ºË{ Á Ê]M –ËY€‹ { ÃZ̳ ¾ËY .d‡Y ½Y€ËY
Äf‹Y{ ½Y€ËY ÄÌ^‹ ÊËYÂÅ Á [M į ʬ—ZÀ» { Á Ã|‹ dŒ¯
|‹ Y ĸu€» |Àq ZË ®Ë ʗ { Y Ê°Œy ŠÀe ,|À‹Z]
¾Ë€f¼Æ» Y Ê°Ë ½YÂÀŸ Ä] Ê°Œy ŠÀe .|À¯Ê» Ä]€ne
{‹ʻ Äf§€³ €œ¿ { {€°¸¼Ÿ ŠÅZ¯ ʸY ¶»ZŸ Á ZŊÀe
ÉY€] ÊËZʼnÁ ,ºË{ –ËY€‹ { .(Babu et al., 2004)
|¿YÂeÊ» į {Y{ {ÂmÁ |‹ ¶§ ʗ { [M ɁZ‡ ÀÌy}
¾ËY Z] .|À¯ ®¼¯ ¶§ €yM Á |‹ ÃÁ{ { ÃZ̳ |‹ Ä]
–ËY€‹ { Ê°Œy ŠÀe Ä] ¶¼ve ÉY€] ÃZ̳ sԏY ,{ÂmÁ
ÄÀ˂Šc|» Y{ { Á Ã{Â] ¾X¼˜» Á Y|ËZa Z°ÅY ®Ë ,ºË{
ÉY€] [M ž]ZÀ» Ä°ÀËY Ä] ÄmÂe Z] .d‹Y{ |ÅYÂy ɀf¼¯
į Êe { ,d‡Y dË{Á|v» ÉYY{ ½Y€ËY { Ê]M d‹Z¯
Z] ½YÂeÊ» ,|¿Â‹ |Ì·Âe Ê°Œy Ä] ¶¼vf» ÉZÅ`Ìe¿ƒ
½Y‚Ì» Á {€] dŒ¯ €Ë Y ɀfŒÌ] t˜‡ [M ½Y‚Ì» ¾Ì¼Å
.{Y{ ŠËY‚§Y Y |Ì·Âe
€nÀ» Ê°Œy ŠÀe Ä] ʰ˃·Â˂̧ ÉZ³Z‡ Y ÊÅZ³M
į d‡Y Ã|‹ ŠÀe Ä] ¶¼ve ÉZÅʳ„ËÁ ÊËZ‡ZÀ‹ Ä]
{€¯ Ã{Z¨f‡Y Ê°Ìf¿ƒ {Â^Æ] ÉY€] ZÆ¿M Y ½YÂeÊ»
¹|À³ sԏY ÉY€] Z°ÅY Á{ .(Rebetzke et al., 2006)
(1) :d‡Y Ã|‹ ÄWYY Ê°Œy ŠÀe Ä] ¶¼ve œÀ» Ä]
Z] ÉZÅ`Ìe¿ƒ Á Ã|‹ ¹Zn¿Y µZ»€¿ –ËY€‹ { ŠÀ˂³
{ ZÅ`Ìe¿ƒ ¾ËY į |Ì»Y ¾ËY Ä] ,|¿Â‹ [Zzf¿Y ÓZ] {€°¸¼Ÿ
,|ÀÅ{ ½ZŒ¿ {Ây Y Ê·Â^« ¶]Z« {€°¸¼Ÿ ‚Ì¿ ŠÀe –ËY€‹
€eÓZ] {€°¸¼Ÿ Z] ½ZÅZ̳ ÉY€] ŠÀe –ËY€‹ { ŠÀ˂³ (2)
Y ʸËÓ{ Ä] ÊËZÆÀe Ä] Z°ÅY Á{ ¾ËY {€]Z¯ .{‹ ¹Zn¿Y
‚Ì»Md̬§Â» `Ìe¿ƒ Á –Ìv» ¾Ì] |Ë|‹ ¶]Z¬f» €iY ĸ¼m
Êf¨ Ê°Œy ŠÀe Ä] ¶¼ve .(Blum, 2005) {Â] |ÅYÂz¿
Á ¶¼vf» ½ZÅZ̳ ½YÂeʼ¿ ÊfuY Ä] Á Ã{Â] Ã|ÌrÌa
cZ¨ Y É{Zˁ {Y| e .{€¯ Y|m €´Ë{®Ë Y Y …Zˆu
ZË ḋZˆu Ä] €nÀ» ®ËƒÂ·Â˂̧ Á ®ËƒÂ·ÂÀ§ ,®ËƒÂ·Â§€»
ÉY€] ÃZ̳ sԏY ÉY€] ,¾ËY€]ZÀ] .|¿Â‹Ê» ŠÀe Ä] ¶¼ve
Ä] ÃZ̳ Ze {Y{ €Ì̤e Y cZ¨ ¾ËY ÊfˆËZ] Ê°Œy ŠÀe
Z»Y .|À¯ |Ì·Âe ÉY|ËZa {€°¸¼Ÿ Á Ã|‹ Z³Z‡ Ê°Œy ŠÀe
ÉY€] \‡ZÀ» ¾Ë|·YÁ ÊfˆËZ] ,ÊuԏY cZ̸¼Ÿ Z£M Y ¶^«
3
Ä] ʟY ¾Ì» ÊÅZ̳ {Y» dŒ¯ dÆm | ] µZ‡ ‚ÌËZa
.|‹ Ã{Z»M €f»Êf¿Z‡ 50 ĸZ§ Z] ÉYÄfŒa Á ÉÂm c
Z] (`Ìe¿ƒ 28 Â¼n» {) Ê«Ôe 21 Á ¾Ë|·YÁ ÉZÅ~]
ĸZ§ Ä] ~] 15 {Y| e `Ìe¿ƒ €Å Y Á ʿ¨Ÿ |“ Š¯oZ«
{ ŠËZ»M ¾ËY .|‹ dŒ¯ ÄfŒa €Å ÉÁ { €f»Êf¿Z‡ 20
d¼ˆ« Á{ { ʧ{Ze ¶»Z¯ ÉZŭ¸] ÉÄËZa s€— \·Z«
ÉY€] ZÆ¿M Y Ê°Ë Ä¯ |Ë{€³ Y€mY Y€°e ć Z] ¹Y|¯ €Å Y‚n»
.|‹ Äf§€³ €œ¿ { ŠÀe –ËY€‹ ÉY€] ɀ´Ë{ Á Ê]M –ËY€‹
Äf§€³ €œ¿ { €f» lÀa µZ»€¿ Á ŠÀe Šz] Á{ ¾Ì] ĸZ§
cZ̸¼Ÿ .{‹ ɀ̳¸m Šz] Á{ ¾Ì] [M dŒ¿ Y Ze |‹
€Å { ÉZÌ]M Á ÊÅ|¸³ Z£M Ze ʟY ¶§ µÂ— { d‹Y{
Y †a .d§€³ ¹Zn¿Y Ĭ˜À» µÂ¼ » c Ä] d¼ˆ« Á{
¶»Z¯ — Ä] ŠÀe ŠËZ»M { ÉZÌ]M ,ÊÅ|¸³ ĸu€» Á€‹
|¿€Ì³ Y€« ŠÀe €ÌiZe dve ½ZÅZ̳ Ze |‹ ž˜«
.(Mojarrad and Ghannadha, 2008)
k€¯ { ʳ|¿Z] c|» |À¸] ¾Ì´¿ZÌ» Ä°ÀËY Ä] ÄmÂe Z]
Á ½Zfˆ» { ʳ|¿Z] ¾ËY €fŒÌ] Á Ã{Â] €f»Ê¸Ì» 265 €]Y€]
Y Á (Mohsenabadi et al., 2008) |Å{Ê» w ZÆ] ¶ËYÁY
d‡Y €f»Ê¸Ì» 800 Ze 400 ¾Ì] ¹|À³ Ê]M ZÌ¿ ʧ€—
¾ËY€]ZÀ] ,(Mazaheri and Majnoon Hosseini, 2001)
Y€« ŠÀe dve ÃZ̳ –ËY€‹ ¾ËY { ÓZ] Z̈] µZ¼fuY Z]
ÃZ´fˆËY –‡Âe Ã|‹ ÄWYY Z»M ª^— .d§€³ |ÅYÂy
{ ʳ|¿Z] ½Y‚Ì» ‚Ì¿ k€¯ ɁÁZŒ¯ Ã|°Œ¿Y{ ʇZÀ‹YÂÅ
ÃZ» Á{ { .d‡Y Ã{Â] €f»Ê¸Ì» 216 µ{Z » 1386-87 µZ‡
,d‡Y Ã{Â] ŠÀe µZ¼ŸY Á ÊÅ|¸³ Z£M ½Z» į ¾WÁƒ Á Ê»
Ã|‹ ‰Y‚³ €f»Ê¸Ì» 0/2 Á 14/2 \Ìe€e Ä] ʳ|¿Z] ½Y‚Ì»
.dˆÌ¿ ʧZ¯ ¹|À³ Ê Ì^— |‹ ÉY€] ½Y‚Ì» ¾ËY į
ÉY€] d¼ˆ« Á{ €Å { ʳ|̇ Á ÊÅ|¸³ xËZe
ÄeÂ] 10 {Y| e ʳ|̇ Y †a .|‹ d‹Y{{ZË ZÅ`Ìe¿ƒ
cZ¨ Á kZy ğ‚» Y (ʌËZ»M |uYÁ) ¦Ë{ €Å Y º·Z‡
µÂ— ,ʸY ÄnÀa Z¨eY ,ÁZ] ċÂy {Y| e ,ÄnÀa {Y| e
½Á Á Ä¿Y{ {€°¸¼Ÿ ,ċÂy { Är¸^À‡ {Y| e ,¶°¿Y|a
Cruz-Aguado et al., 2000; ) |‹ ɀ̳ÁY|¿Y Ä¿Y{Y‚Å
ŠËZ»M Y Ã|»M d‡{ Ä] ÉZÅÃ{Y{ .(Hailu et al., 2010
ÄeÂ] ®e ÉY€] Ä¿Y{ {€°¸¼Ÿ Á Ã|‹ EXCEL Y‚§Y ¹€¿ {YÁ
Y‚§Y ¹€¿ Y ¶·M É{ s€— †¿ZËYÁ Ä˂ne ÉY€] .|‹ Ä^‡Zv»
Y{¼¿ º‡ Á ¶·M É{ Ä˂ne ÉY€] .|‹ Ã{Z¨f‡Y SAS
1391 /µÁY ÃZ¼‹ /¹Á{ µZ‡ /cÔ£ cZ¬Ì¬ve
ZÆ¿M Y į |ÀfˆÅ ÊeZ¨ Y d‹Y{€] ŽyZ‹ Á º¯ÁZ]Z¿
{‹ʻ Ã{Z¨f‡Y ®Œy –ËY€‹ { {€°¸¼Ÿ ŠËY‚§Y ÉY€]
cZ¬Ì¬ve ‚Ì¿ ½Z¿ ¹|À³ {» { .(Khan et al., 2010)
d‡Y Ã|‹ ¹Zn¿Y ¶·M É{ ‰Á Y Ã{Z¨f‡Y Z] É|À¼‹Y
{» { ZÆ¿M €fŒÌ] Z»Y ,(Mojarrad et al., 2009)
|¿Â‹Ê» dŒ¯ µÂ¼ » c Ä] į d‡Y Ã{Â] ÊËZÅ`Ìe¿ƒ
É{Á Ä] d‡Y ¾°¼» į ʌz] |Ì»Y ÉZÅ`Ìe¿ƒ {» { Á
ʼË|« ÉZÅ`Ìe¿ƒ Z] ZÆ¿M ĈËZ¬» Á |¿Â‹ ʧ€ »
.{‹ʻ Ã|Ë{ ɀf¼¯ ÉZʼnY‚³
Ê°Ìf¿ƒ ¶Ìˆ¿Zfa Y ÊÅZ³M ŠËZ»M ¾ËY Y ¥|Å
Ä] É{Á Ä] d‡Y ¾°¼» į {Â] ½Z¿ ¹|À³ Y ÊËZÅ`Ìe¿ƒ
Á sԏY Ĉ‡Â» { ZÅ`Ìe¿ƒ ¾ËY .|¿Â‹ ʧ€ » º« ½YÂÀŸ
Ä°ÀËY Ä] ÄmÂe Z] ,¾ÌÀr¼Å .|¿YÄf§ZË Ä ‡Âe ~] Á µZÆ¿ ÄÌÆe
Ä] ¶^« ZÅc|» Y į {Y{ {ÂmÁ Œ¯ { ÊËZÅ`Ìe¿ƒ
|¿Y{ {ÂmÁ ÊËZÅ`Ìe¿ƒ ‚Ì¿ Á |¿Â‹Ê» dŒ¯ ºË{ c
¾ËY Y ¥|Å ¾ËY€]ZÀ] ,|¿Y{ ÊËÓZ] {€°¸¼Ÿ ¶Ìˆ¿Zfa į
¾ËY Y ½YÂeÊ» ZËM į {Â] µY‡ ¾ËY Ä] [YÂm ªÌ¬ve
–ËY€‹ { {€°¸¼Ÿ Z] –^e€» cZ¨ sԏY ÉY€] ZÅ`Ìe¿ƒ
.{€¯ Ã{Z¨f‡Y ‚Ì¿ ZÅ`Ìe¿ƒ €ËZ‡ { ŠÀe Á µZ»€¿
ZʼnÁ Á {Y»
ÊÅZ̳ {Y»
,2}M ¶»Z‹ ½Z¿ ¹|À³ `Ìe¿ƒ d¨Å Y ªÌ¬ve ¾ËY {
WS- Á WS-82- 7 ,WS-82-9 ,ÉY{€‡ ,Y€Ì‹ ,€Ë¯
Ä] 2}M Á ÉY{€‡ ,€Ë¯ ÉZÅ`Ìe¿ƒ .|‹ Ã{Z¨f‡Y 82-13
ÄfyZÀ‹ Ê°Œy ŠÀe Ä] ¶¼vf» ÉZne ÉZÅ`Ìe¿ƒ ½YÂÀŸ
ÓZ] {€°¸¼Ÿ ¶Ìˆ¿Zfa Y€Ì‹ `Ìe¿ƒ į Ê·Zu { ,|¿YÃ|‹
ÉZÅ`Ìe¿ƒ .d‡Y Ê°Œy ŠÀe Ä] …Zˆu Zf^ˆ¿ Á Äf‹Y{
Ä] ~] Á µZÆ¿ ÄÌÆe Á sԏY Ĉ‡Â» { ‚Ì¿ WS ÃÁ€³
Á Ã|‹ ŠÀ˂³ Ê°Œy ŠÀe Ä] ¶¼vf» ÉZÅ`Ìe¿ƒ ½YÂÀŸ
ÉZne ¹Z«Y ½YÂÀŸ Ä] ½|‹ ʧ€ » ¶Ìˆ¿Zfa |‡Ê» €œ¿ Ä]
.|À‹Z] Äf‹Y{ Y
ÉYğ‚» ŠËZ»M
†Ë{€a ʌÅÁ„a ğ‚» { ÊÀË|·YÁ ÉZÅ`Ìe¿ƒ
µZ‡ { ¦¸fz» xËZe Á{ { k€¯ Ê Ì^— ž]ZÀ» Á ɁÁZŒ¯
ÊÅ{ċÂy Y †a ZÆ] ¶§ { .|¿|‹ dŒ¯ 1385
.d§€³ ¹Zn¿Y `Ìe¿ƒ d¨Å ¾ËY ¾Ì] ħ€— ®Ë ÉZÅÊ«Ôe
¶·MÉ{ ‰Á Z] ½Z¿ ¹|À³ { cZ¨ Êy€] gYÂe Ä ·Z˜» :½YZ°¼Å Á ÊÀ̌»Y
€fŒÌ] ÉZÅʇ€] ,–ËY€‹ Á{ ¾Ì] Ä¿Y{ Y‚Å ½Á cÁZ¨e
ʇYÁ Ä] –ËY€‹ Á{ ¾Ì] {€°¸¼Ÿ cÁZ¨e Ã|¼Ÿ į {Y{ ½ZŒ¿
.(2 µÁ|m) d‡Y Ã{Â] ÃZ̳ { ċÂy {Y| e
cZ¨ ļŠÉY€] (GCA) ʻ¼Ÿ ɀË~a \̯€e
{Y» ¾ËY { į {Y{ ½ZŒ¿ ÄnÌf¿ ¾ËY .|»M d‡{ Ä] Y{ÊÀ »
Á Äf‹Y{ {ÂmÁ sԏY ÉY€] Ê]Ây ¶Ìˆ¿Zfa ,Ê°Ìf¿ƒ
½ZŒ¿ Ê^‡ZÀ» Ê°Ìf¿ƒ ÂÀe cZ¨ ¾ËY €œ¿ Y ZÅ`Ìe¿ƒ
€iY Ã|ÀÅ{ ½ZŒ¿ GCA Y{ÊÀ » €iY ½{Â] ÓZ] .|ÀÅ{Ê»
ʌËY‚§Y { ʌËY‚§Y ¶]Z¬f» €iY 0ÓZ¼fuY Á ZŽƒ ʌËY‚§Y
½Y‚Ì» Ã|ÀÀ¯ ½ZÌ] d̏y ¾ËY .(Griffing, 1956) d‡Y
{Y» ¾Ì] { €iY ¾ËY Äq €Å .d‡Y d¨ ÊuԏY ‰Y
d̬§Â» †¿Z‹ į d‡Y ÊÀ » ½Y|] ,|‹Z] €fŒÌ] ÊuԏY
ÂÀe ¶Ìˆ¿Zfa Á Ã{Â] €fŒÌ] dÌ ¼m { d¨ ½M sԏY
ɀ̳ÁY|¿Y cZ¨ €fŒÌ] {» { .d‡Y €fŒÌ] Ã{Z¨f‡Y ¶]Z«
\̯€e †¿ZËYÁ Y €fŒÌ] Z̈] GCA †¿ZËYÁ ,Ã|‹
Ç|ÀÅ{ ½ZŒ¿ €»Y ¾ËY į {Â] (SCA) ʏy ɀË~a
dÌ^·Z£ †¿ZËYÁ Ä] d^ˆ¿ ʌËY‚§Y †¿ZËYÁ €fŒÌ] d̼ÅY
Z] į Y{ÊÀ » †Ë€fÅ ½Y‚Ì» į d‡Y Ê·Zu { ¾ËY .{Â]
ÉY€] ,{‹ʻ ŽzŒ» (SCA) ʏy ɀË~a \̯€e
½ƒ ¶¼Ÿ d¨³ ½YÂeÊ» ¾ËY€]ZÀ] .{Â^¿ Y{ÊÀ » cZ¨ \¸£Y
€iY ¾ÌÀr¼Å .{Â] ʌËY‚§Y c Ä] cZ¨ Y ÉZ̈] ÉY€]
ÉY€] –Ìv» { SCA Á –Ìv» { GCA ¾Ì] ¶]Z¬f»
Ä] {€°¸¼Ÿ {» { Z»Y .{Â^¿ Y{ÊÀ » cZ¨ Y ÉZ̈]
{ GCA ¾Ì] ¶]Z¬f» €iY ,ʟY d¨ ¾Ë€f¼Æ» ½YÂÀŸ
{» { į ɀ´Ë{ ÉZʼnY‚³ { .{Â] Y{ÊÀ » –Ìv»
ʌËY‚§Y †¿ZËYÁ €fŒÌ] d̼ÅY ‚Ì¿ Ã|‹ €ŒfÀ» ¹|À³
Joshi et al., ) {‹ʻ Ã|ÅZŒ» Ä^¸£ †¿ZËYÁ Ä] d^ˆ¿
2004; Sayar et al., 2007; Mojarrad and
.(Ghannadha, 2008
4
Mather and Jinks, ) ‚°ÀÌm Á €f» ‰Á Y Wr Á Vr
ʧ€ » Y‚§Y ¹€¿ Y cÔaÉZ] GGE Ä˂ne ÉY€] Á (1982
(Yan and Kang, 2003) ²¿Z¯ Á ½ZË –‡Âe Ã|‹
.|‹ Ã{Z¨f‡Y
hv] Á lËZf¿
¶·MÉ{ ŠËZ»M †¿ZËYÁ Ä˂ne
Á{ { ZÅÊ«Ôe Á ¾Ë|·YÁ ÊbÌe¿ƒ cY€Ì̤e \ˀ“
ʇ€] .d‡Y Ã|‹ ÄËYY 1 µÁ|m { ŠÀe Á µZ»€¿ –ËY€‹
¾Ë|·YÁ cY€Ì̤e ÄÀ»Y{ į |Å{Ê» ½ZŒ¿ µÁ|m ¾ËY ʸ¯
cZ¨ .{Y{ Y€« ZÅÊ«Ôe cY€Ì̤e Ã{Á|v» { 0Z^ˀ¬e
\ËY€“ ¾Ë€fŒÌ] ÉYY{ {€°¸¼Ÿ Á ¶°¿Y|a µÂ— ,ÊÅ|¸³
{Y» { cZ¨ ¾ËY ÂÀe Ã|ÀÅ{ ½ZŒ¿ į |¿{Â] cY€Ì̤e
Ä] ¶·MÉ{ †¿ZËYÁ Ä˂ne ÄnÌf¿ .d‡Y Ã|‹ Ã{Z¨f‡Y Ê°Ìf¿ƒ
Ê°Œy ŠÀe .d‡Y Ã|‹ ÄËYY 2 µÁ|m { ²Ą̀ˀ³ ‰Á
µÂ— ,Ä¿Y{ Y‚Å ½Á ‚m Ä] cZ¨ ļŠ€] ʸ¯ — Ä]
ŠÅZ¯ .d‹Y~³ €ÌiZe ċÂy { Är¸^À‡ {Y| e Á ®ŒË
|{ 26 µZ»€¿ –ËY€‹ Ä] d^ˆ¿ ŠÀe –ËY€‹ { {€°¸¼Ÿ
|{ 40-20) –‡Âf» ŠÀe c|‹ ÄÀ»Y{ { į {Â]
Z̈] cÁZ¨e .(Blum,2011) {€Ì³Ê» Y€« (ŠÅZ¯
d‹Y{ {ÂmÁ (ZÆ¿M F1 Á ¾Ë|·YÁ) ZÅ`Ìe¿ƒ ¾Ì] ÉY{ÊÀ »
¾ËY { Ê]Zzf¿Y ¾Ë|·YÁ į d‡Y ¾ËY Ã|ÀÅ{ ½ZŒ¿ į
ÂÀe ZÆ¿M Ã|ÀÀ¯ µ€fÀ¯ ÉZŶ·M Á cZ¨ ¾ËY €œ¿ Y ŠËZ»M
.|¿Y{ É{Zˁ
ŠËZ»M ¾ËY { Ã|‹ ɀ̳ÁY|¿Y cZ¨ €fŒÌ] {» {
į É— Ä] .{Â^¿ Y{ÊÀ » –Ìv» Á `Ìe¿ƒ ¾Ì] ¶]Z¬f» €iY
{ €iY ¾ËY {€°¸¼Ÿ Á Z¨eY d¨ Á{ ÉY€] ZÆÀe Â¼n» {
€³Y į |Å{Ê» ½ZŒ¿ lËZf¿ ¾ËY .|‹ Y{ÊÀ » |{ 5 t˜‡
cZ¨ ªË€— Y {€°¸¼Ÿ sԏY ÉY€] Ê°Ìf¿ƒ {Y» ¾ËY Y
–Ë€‹ Á{ €Å { Y ŠÀ˂³ ½YÂeÊ» {‹ Ã{Z¨f‡Y –^e€»
Äf^·Y .d‡ÓZ] –ËY€‹ Á{ { ZÅ`Ìe¿ƒ ÉY|ËZa Y€Ë {Y{ ¹Zn¿Y
–‡Âf» ŠÀe c|‹ ŠËZ»M ¾ËY { į d‹Y{ €œ¿ { |ËZ]
Á {€°¸¼Ÿ d¨ {» { ZÅ`Ìe¿ƒ ¾Ì] Y{ÊÀ » cÁZ¨e .{Â]
c Ä] į ÊËZŊËZ»M €´Ë{ { ½M Z] –^e€» cZ¨
Topal et al., ) d‡Y Ã|‹ ‰Y‚³ ‚Ì¿ Ã|‹ ¹Zn¿Y ¶·MÉ{
2004; El-Maghraby et al., 2005; Sayar et al.,
½|Œ¿ Y{ÊÀ » Ä] ÄmÂe Z] .(2007; Khan et al., 2010
1391 / µÁY ÃZ¼‹ /¹Á{ µZ‡ /cÔ£ cZ¬Ì¬ve
5
ZÅF1 ¾Ì] Á ¾Ë|·YÁ ¾Ì] cY€Ì̤e ÄÀ»Y{ Á ÊbÌe¿ƒ cY€Ì̤e \ËY€“ -1 µÁ|m
d¨
trait
ÄnÀa {Y| e
Tiller number
ċÂy {Y| e
Spike number
{ Är¸^À‡ {Y| e
ċÂy
Spikelets in
spike
Ä¿Y{ Y‚Å ½Á
Thousand
weight
Z¨eY
Height
¶°¿Y|a
Peduncle
®ŒË µÂ—
Awn length
ÊÅ|¸³
Flowering
ʳ|̇
Maturity
Ä¿Y{ ½|‹ €a ÃÁ{
Grain filling
period
{€°¸¼Ÿ
Yield
Table 1. Genotypic coefficient of variations among parents and F1 genotypes
µZ»€¿ –ËY€‹
ŠÀe –ËY€‹
Normal
Stress
condition
condition
cY€Ì̤e \ˀ“
cY€Ì̤e \ˀ“
cY€Ì̤e ÄÀ»Y{
cY€Ì̤e ÄÀ»Y{
ÊbÌe¿ƒ
ÊbÌe¿ƒ
ZÅF1 cY€Ì̤e ÄÀ»Y{
¾Ë|·YÁ
¾Ë|·YÁ
Genotypic
Genotypic
Range
of
F1s
Range of
Range of
of Coefficient
coefficient of
parents
parents
variation
variation
cY€Ì̤e ÄÀ»Y{
ZÅF1
Range of
F1s
10.7
10-19.1
10-18
14.7
6.6-16.5
8-13
4.95
9.5-14.2
8.6-13.6
13
6.3-14.1
7-10.4
6.6
14.3-19.4
15.1-19.1
6.9
14.4-18.2
6.9-8.5
10.1
28-43.4
29.1-43.6
8.6
30.7-41.3
26.8-42.5
9.6
74.8-102.3
73.4-105.9
8.8
67.4-88
64.8-93
14.1
27.6-46
30.2-47.6
13.7
22.1-39.1
25.6-40.4
0.9
6.6-7.9
7-8.3
5.8
6.7-8.6
6.9-8.5
14.9
11-20.8
8.5-17.3
15.4
9.1-18.9
7.2-16.7
4.9
40.1-48
38-9-48.6
2.9
36.5-45.4
37.5-46
6.7
24.1-32.7
26.2-35.1
6.3
25.6-33.4
25.2-35
16.8
11-24.5
10.2-23.2
4.1
9.5-16
8.6-15.5
¶·MÉ{ ‰Á Z] ½Z¿ ¹|À³ { cZ¨ Êy€] gYÂe Ä ·Z˜» :½YZ°¼Å Á ÊÀ̌»Y
6
{ ħ€— ®Ë 7×7 ¶·MÉ{ { ZÆ¿M F1 Á ¾Ë|·YÁ { Ã|‹ ɀ̳ ÁY|¿Y cZ¨ †¿ZËYÁ Ä˂ne cZ ]€» ¾Ì´¿ZÌ» €Ë{Z¬» -2 µÁ|m
.µZ»€¿ Á Ê°Œy ŠÀe (–Ìv») –ËY€‹ Á{ { ¹|À³
Table 2. ANOVA mean squares of traits measured in parents and F1s in a 7×7 diallel mating design in wheat at
normal and stress conditions.
Ä¿Y{ ½|‹ €a ÃÁ{ { ¹€³) {€°¸¼Ÿ
(cm) Z¨eY (cm) ¶°¿Y|a (cm) ®ŒË µÂ— (Á) ÊÅ|¸³ (Á) ʳ|̇
(Á)
(ÄeÂ]
Awn
Flowering Maturity
Height (cm) Peduncle
Filling period
Yield
(cm)
Length (cm) (day)
(day)
(day)
(g/plant)
Äm{
É{YM
df
ÄnÀa {Y| e
Tiller
number
ċÂy {Y| e
Spike
number
–Ìv»
1
Environment
–Ìv» ½Á{ ­Â¸]
4
Blocks into
Environment
`Ìe¿ƒ
27
Genotype
–Ìv» × `Ìe¿ƒ
Genotype × 27
Environment
Z˜y
107
Error
GCA
6
{ Är¸^À‡ {Y| e
ċÂy
Spiklets in
spike
Ä¿Y{ Y‚Å ½Á
(¹€³)
Thousand
weight (g)
476**
317.4**
3.3 ns
22.5 ns
4111**
514**
1.78 ns
297**
1907**
674**
836**
36.4
15.7
3.5
39.2
67.1
5.8
5.08
28.5
6.5
45.2
8.2
22.6**
11.35**
9.5**
85.6**
381.2**
143.3**
0.85**
33.1**
27**
33.2**
31**
4.13 ns
4.07 ns
1.1 ns
14.6 ns
24*
6 ns
0.29 ns
7.6 ns
5.6 ns
13.5 ns
26.3*
6.15
5.3
1.16
15.7
12.8
4.4
0.25
7.6
7.07
12.2
16.1
cY€Ì̤e ž]ZÀ»
S.O.V
SCA
–Ìv» × GCA
Condition ×
GCA
–Ìv» × SCA
Condition ×
SCA
**
**
**
**
**
**
21
79
6.4 ns
22.05
8.25 ns
31.5
3.14**
299
24.6 ns
1563
49.9**
565
22.8**
1.7
0.59**
115
10 ns
87.9
11.8*
64
23.7*
78.2**
17.4 ns
6
3.25 ns
7.38 ns
1.65 ns
13.4 ns
23 ns
7 ns
0.41 ns
1.3 ns
5.9 ns
6.7 ns
69.2**
21
4.35 ns
3.19 ns
0.93 ns
15 ns
22*
5.5 ns
0.25 ns
9.1 ns
3.8 ns
14.8 ns
14.4 ns
ns: Non significant.
**
**
**
Y{ÊÀ » €Ì£ ns
* and **: significant at 0.05 and 0.01 probability level, respectively
ÉY{ÊÀ » cÁZ¨e WS ÃÁ€³ ÉZÅ`Ìe¿ƒ ÉGCA į Ê·Zu
€œ¿ ¾ËY Y ÉY{€‡ `Ìe¿ƒ {» ¾ËY { .{Y|¿ ½ZŒ¿ €¨ Z]
ÄnÀa {Y| e Ä°ÀËY Z] į |‡Ê» €œ¿ Ä] Ê^·Zm `Ìe¿ƒ
Á d‡ÓZ] ‚Ì¿ ZÆ¿M ÉÁZ] ½Y‚Ì» ,|À¯Ê» |Ì·Âe É{Zˁ
€] ,|À¯ ¶¬fÀ» ZÅ`Ìe¿ƒ €´Ë{ Ä] Y d̸]Z« ¾ËY |¿YÂeÊ»
.{Y{ ɀf¼¯ ÁZ] ÄnÀa {Y| e į Y€Ì‹ `Ìe¿ƒ ¥Ôy
¾Ë€fÆ] ÉY{€‡ `Ìe¿ƒ d¨ ¾ËY sԏY ÉY€] ¾ËY€]ZÀ]
€œ¿ {» d¨ €œ¿ Y kZf¿ ¾Ë€fÆ] |Ì·Âe ÉY€] .d‡Y
Y ʻ¼Ÿ ɀË~a \̯€e ¾Ë€fŒÌ] į ÊÀË|·YÁ ÊfˆËZ]
Barnard et al., ) {Y{ Ê«Ôe €´Ë|¼Å Z] |ÀÅ{Ê» ½ZŒ¿
ZÅ`Ìe¿ƒ ¾Ë€fÆ] ċÂy { Är¸^À‡ {Y| e €œ¿ Y .(2002
,€Ë¯ `Ìe¿ƒ ÊuԏY ÉZÅÄ»Z¿€] { ɀ̳Z¯ Ä] ÉY€]
ŽzŒ» lËZf¿ Y į —½Z¼Å .|¿{Â] WS-82-9 Á Y€Ì‹
{ ċÂy Á ÄnÀa É{Zˁ {Y| e ÉYY{ į ÊËZÅ`Ìe¿ƒ d‡Y
€³Y .|¿{Â] ¦Ì “ ċÂy { Är¸^À‡ {Y| e €œ¿ Y |¿{Â] ÄeÂ]
Ä] d^ˆ¿ ɀf¼¯ ÁZ] ÉZÅÄnÀa {Y| e Y€Ì‹ `Ìe¿ƒ Äq
Y €fŒÌ] ½M ċÂy { Är¸^À‡ {Y| e Z»Y d‹Y{ ÉY{€‡
ÊËZÅ`Ìe¿ƒ Ä] Äfˆ¿YÂe Y ½Y‚Ì» ¾ËY Á {Â] ÉY{€‡ `Ìe¿ƒ
.|À¯ ¶¬fÀ» Äf§ZË Ê«Ôe ZÆ¿M Z] į
**
.0/01 Á 0/05 t˜‡ { Y{ÊÀ » \Ìe€e Ä] ** Á*
Á ÓZ] ɀË~adiYÁ Ã|ÀÅ{ ½ZŒ¿ ½ƒ ʌËY‚§Y €iY ½{Â] ÓZ]
Ê¿ƒ ¦Ì “ ¶]Z¬f» €iY ÄnÌf¿ ‚Ì¿ Á ½M €] –Ìv» €f¼¯ €iY
{ÂmÁ ¾ËY Z] .{‹ ŠÀ˂³ { €ŒÌ] d̬§Â» Ä] €nÀ» Á Ã{Â]
Ã{Z¨f‡Y Zņ¿ZËYÁ ¾ËY ÉÁ{ €Å Y |ËZ] ÊuԏY ÉZʼnÁ
ÉY€] ʏy ɀË~a \̯€e .(Topal et al., 2004) |À¯
¾ËY Ä°ÀËY Ä] ÄmÂeZ] .|»M d‡{ Ä] Y{ÊÀ » cZ¨ Y Êy€]
ÉY€] |ˀ^ÌÅ ¹|À³ |Ì·Âe Á d‡Y †Ë€fÅ Ä] •Â]€» €iY
½M Y ½YÂeʼ¿ ¾ËY€]ZÀ] ,dˆÌ¿ ʸ¼Ÿ ÂÀŠʟY Ã{Z¨f‡Y
į Êe { Äf^·Y .{¼¿ Ã{Z¨f‡Y ºÌ¬fˆ» — Ä]
dÌ^·Z£ ÉÂXe) ZŽƒ dÌ^·Z£ €iY ¶Ì·{ Ä] †ËÁ€fÅ
į d‡Y ÊÀ » ½Y|] ,|‹Z] dÌ^·Z£ ©Â§ Ä¿ Á (†ËÁ€fÅ
|ÀÅ{Ê» ½ZŒ¿ Y †ËÁ€fÅ ¾Ë€fŒÌ] į É|·YÁ Á{ ½YÂeÊ»
{Y| e ¾Ë€fŒÌ] į É{Y€§Y Ã|ÀËM ÉZŶˆ¿ { Á Ã{Y{ Ê«Ôe
¾Ë|·YÁ †ËÁ€fŠʇ€] .{€¯ [Zzf¿Y |¿Y{ Y [¸˜» ¶·M
.|‹ |ÅYÂy ¹Zn¿Y cÔaÉZ] Ä˂ne lËZf¿ d¼ˆ« {
Á{ { ZÅÃ{Y{ ¾Ì´¿ZÌ» …Z‡Y €] ¾Ë|·YÁ GCA €Ë{Z¬»
{Y| e €œ¿ Y .d‡Y Ã|‹ ÄËYY 3 µÁ|m { ʌËZ»M –ËY€‹
Á ¾Ë€fŒÌ] ÉY{€‡ `Ìe¿ƒ ,ÄeÂ] { ċÂy {Y| e Á ÄnÀa
{ .|¿{Y{ ½ZŒ¿ Y Y{ÊÀ » GCA ¾Ë€f¼¯ €Ë¯ `Ìe¿ƒ
1391 / µÁY ÃZ¼‹ /¹Á{ µZ‡ /cÔ£ cZ¬Ì¬ve
7
.–ËY€‹ Á{ ¾Ì´¿ZÌ» ÉY€] 7×7 ¶·MÉ{ Ê«Ôe { Ã|‹ Ã{Z¨f‡Y ¾Ë|·YÁ GCA €Ë{Z¬» -3 µÁ|m
Table 3. GCA values of parents in 7×7 diallel mating design for means of two conditions
¾Ë|·YÁ
Parents
Är¸^À‡ {Y| e
ÄnÀa {Y| e ċÂy {Y| e
ċÂy {
Tiller
Spike
number number Spiklets in
spike
2}M
Azar 2
€Ë¯
Kavir
Y€Ì‹
Shiraz
ÉY{€‡
Sardari
ws-82-9
ws-82-7
- 0.51
- 0.34 ns
0.1 ns
-0.38 ns
0.51
-0.36*
ws-82-13
0.02 ns
- 0.33 ns
- 0.16 ns
Ä¿Y{ Y‚Å ½Á
(¹€³)
Thousand
weight
Z¨eY
¶°¿Y|a
(€f»Êf¿Z‡) (€f»Êf¿Z‡)
height peduncle
®ŒË µÂ—
(cm)
Awn
length
ÊÅ|¸³
ʳ|̇ ½|‹ €a ÃÁ{
(Á) Ä¿Y{
(Á)
(Á)
flowering maturity Filling
period
{€°¸¼Ÿ
{ ¹€³)
(ÄeÂ]
yield
0.47 ns
0.52 ns
-1.42**
2.3**
7.9**
6.28**
-0.2*
-0.4 ns
-ns1
- 0.7 ns
- 0.4 ns
-2.1**
-0.85*
0.88**
1.8**
-2.6**
-1.3**
0.29**
-1.3**
0.2 ns
1.5**
1.5*
0.63 ns
- 0.13 ns
0.54**
-1.5**
0.8 ns
-1.14**
0.07 ns
1.5**
1.8**
0.2 ns
- 1.1 ns
1.84**
1.08**
0.01 ns
-2.3**
5.04**
1.97**
0.09 ns
2.4**
1.15*
-1.1*
-0.6 ns
3.2
-1.4**
1.33 ns
-6.9**
- 0.24
-3.63**
0.06 ns
-0.1 ns
-1.2
-1.3**
-1.97
0.25 ns
-0.9
1.5**
-2.2**
-5.6**
-1.96**
-0.2*
0.32 ns
-0.43 ns
-0.59 ns
1.9**
- 0.8 ns
0.56 ns
-
ns
**
**
ns
ns: Non significant.
**
ns
Y{ÊÀ » €Ì£ ns
* and **: significant at 0.05 and 0.01 probability level, respectively
d^j» €ÌiZe į ɀ´Ë{ cZ¨ €œ¿ Y ¶Ì·{ ¾Ì¼Å Ä] Á Ã{Â^¿
¾Ë€fÆ] 2}M `Ìe¿ƒ .{Y{ Ê]Ây dÌ “Á |¿Y{ {€°¸¼Ÿ €]
Ä°ÀËY ¶Ì·{ Ä] .d‡Y ¶°¿Y|a µÂ— ŠËY‚§Y ÉY€] `Ìe¿ƒ
ÀÌy} Ä] {Z« ‚fÀ‡Âf§ ÊËZ¿YÂe ½{Â] YY{ €] ÃÁԟ ¶°¿Y|a
¶Ë— d‡Y Ä¿Y{ Ä] ½M µZ¬f¿Y Á {Ây { ÊËY~£ {Y» ɁZ‡
¾ËY •Z^eY .|À¯Ê» {Zˁ Y Ê°Œy ŠÀe Ä] ¶¼ve ½M ½{Â]
d‡Y Ã|‹ ‰Y‚³ Ô^« Ê°Œy ŠÀe Ä] ¶¼ve Z] d¨
Y .(Ahmadi et al., 2009; Bazargani et al., 2011)
ŽyZ‹ Y €Ë¯ `Ìe¿ƒ ½YÂeÊ» ‚Ì¿ ®ŒË µÂ— €œ¿
½M { Ä°ÀËY Ä] ÄmÂe Z] ÃZ̳ { ®ŒË {ÂmÁ .dˆ¿Y{
–ËY€‹ ÉY€] [¸˜» Êf¨ |¿YÂeÊ» {‹ʻ ¹Zn¿Y ‚fÀ‡Âf§
¾Ë€eÓZ] ÉY{€‡ `Ìe¿ƒ .{‹ Äf§€³ €œ¿ { Ê°Œy ŠÀe
{ Á {Y{ ½ZŒ¿ ÊÅ|¸³ Ze Á ÉY€] Y ʻ¼Ÿ ɀË~a \̯€e
— Ä] |‹Z] Äf‹Y{ ”u `Ìe¿ƒ ¾ËY į ÊËZÅÊ«Ôe
lËZf¿ .|f§YÊ» €ÌyZe Ä] ÊÅ|¸³ ÃÁ{ Á 2/4 –‡Âf»
Y Z»Y ,{Y{ ½ZŒ¿ ʳ|̇ xËZe Z] ÊËÓZ] Ê¿YÂz¼Å ÊÅ|¸³
¾Ë€fÆ] d¨³ ½YÂeÊ» Ê°Œy ŠÀe Ä] ¶¼ve €œ¿ ʬ¿
Á |¿ÁÊ» ¶³ Ä] €e{Á į |ÀfˆÅ ÊËZÅ`Ìe¿ƒ ,ZÅ`Ìe¿ƒ
¹Zn¿Y Y {Ây ʳ|̇ ,Ä¿Y{ ½|‹€a ÃÁ{ ½{€¯ ÃZe¯ ½Á|]
d‡Y ¾°¼» į d‡Y ¶Ì·{ ¾ËY Ä] kZfÀf‡Y ¾ËY .|ÀÅ{Ê»
ʸÌy į |À‹Z] Äf‹Y{ {ÂmÁ …{Á Z̈] ÉZÅ`Ìe¿ƒ
ʸÌy Ä¿Y{ ½|‹ €a ÃÁ{ ½{€¯ ÃZe¯ Z] Á Äf§ ¶³ Ä] žË€‡
Y Y€§ ºˆÌ¿Z°» { ZÅ`Ìe¿ƒ ¾ËY Äq €³Y .|À‡€] ‚Ì¿ žË€‡
**
.0/01 Á 0/05 t˜‡ { Y{ÊÀ » \Ìe€e Ä] ** Á*
¾ËY { į d‡Y ʼƻ cZ¨ Y Ê°Ë Ä¿Y{ Y‚Å ½Á
d¨ ¾ËY ÊeZ^Ÿ Ä] .{Y{ ½ZŒ¿ É{Zˁ Z̈] ÂÀe ŠËZ»M
`Ìe¿ƒ ÉY€] ¹€³ 42/4 Ze Y€Ì‹ `Ìe¿ƒ ÉY€] ¹€³ 29/4 Y
µÁ|m { ½YÂeÊ» Y ÊÆ]ZŒ» ÄnÌf¿ .{Â] €Ì¤f» WS-82-9
ÉYY{ WS-82-9 `Ìe¿ƒ į É— Ä] .{€¯ Ã|ÅZŒ» 2
Ã{Â] d¨ ¾ËY ÉY€] ʻ¼Ÿ ɀË~a \̯€e d̸]Z« ¾Ë€fŒÌ]
Äf‹Y{ {ÂmÁ |·YÁ ¾ËY į ÊËZÅÊ«Ôe { ¾Ì´¿ZÌ» — Ä] Á
Ã{Y{ ½ZŒ¿ ŠËY‚§Y ¹€³ 3/2 Y|¬» Ä] d¨ ¾ËY ½Y‚Ì» d‡Y
.d‡Y Ã|‹
ÊuԏY ‰Y ¾Ë€eÓZ] ¶°¿Y|a µÂ— Á Z¨eY {» {
ÉZÅ`Ìe¿ƒ ‚m į {€¯ Ã|ÅZŒ» 2}M `Ìe¿ƒ { ½YÂeÊ» Y
ÄÀ˂³ ¾Ë€fÆ] WS-82-7 `Ìe¿ƒ .{Â] ŠËZ»M ¾ËY |À¸] Za
ÃZe¯ į Zn¿M Y .d‡Y ÊÅZe¯Za ÉY€] ZÅ`Ìe¿ƒ sԏY ÉY€]
Y ©€ e Á €Ìz^e ½Y‚Ì» ÃZ̳ Äjm ½{Â] ®q¯ Á ½{Â]
Ä] ,|À¯Ê» ŠÀe –ËY€‹ Ä] Z³Z‡ Y `Ìe¿ƒ Á Ã{Y{ ŠÅZ¯
½YÂÀŸ Ä] `Ìe¿ƒ ¾ËY į ʸËÓ{ Y Ê°Ë |‡Ê» €œ¿
Á µZÆ¿ ÄÌÆe Á sԏY cZ¬Ì¬ve Ĉ‡Â» { ¶¼vf» `Ìe¿ƒ
½{Â] ®q¯ Äf^·Y .|‹Z] ÉZ³Z‡ ¾Ì¼Å Ã|‹ |Ì·Âe ~]
{€]Ê» ÓZ] Y d‹Y{€] ŽyZ‹ Äq €³Y ÃZ̳ Äjm |u Y ŠÌ]
€f¼¯ |Ì·Âe ½Y‚Ì» Á €f¼¯ ‚fÀ‡Âf§ ¶Ì·{ Ä] ‚Ì¿ {€°¸¼Ÿ Ê·Á
Blum, ) dˆÌ¿ [¸˜» Á |Å{Ê» ½ZŒ¿ |Ë|‹ ŠÅZ¯
į {€¯ ɀ̳ÄnÌf¿ ½YÂf] |ËZ‹ ¶Ì·{ ¾Ì¼Å Ä] .(2011
ÃZe¯ Za |u Y ŠÌ] Y€Ë |‹Z] €fÆ] €œ¿ ¾ËY Y €Ë¯ `Ìe¿ƒ
¶·MÉ{ ‰Á Z] ½Z¿ ¹|À³ { cZ¨ Êy€] gYÂe Ä ·Z˜» :½YZ°¼Å Á ÊÀ̌»Y
ŠÅZ/¯ µZ/»€¿ –ËY€/‹ Ä/] d^/ˆ¿ {€°¸¼Ÿ Z] –^e€» cZ¨
WS- Á €ËÂ/¯ `/Ìe¿ƒ Á{ .(Blum, 2011) |/Å{Ê» ½ZŒ¿
–ËY€‹ { {€°¸¼Ÿ ŠËY‚§Y ÉY€] ZÅ`Ìe¿ƒ ¾Ë€fÆ] ‚m 82-9
Äq €³Y WS-82-13 Á WS-82-7 `Ìe¿ƒ Á{ .|¿{Â] µZ»€¿
Ä/] Z/»Y ,|¿Â‹Ê» É|À] Ĭ^— ¶¼vf» ÉZÅ`Ìe¿ƒ ½YÂÀŸ Ä]
,ÃZ/̳ Ä/jm ½{Â/] ®/q¯ Á |/u Y ŠÌ/] Ê/‡{Á ¶Ì·{
ÉY€] Ê ^À» ½YÂÀŸ Ä] |À¿YÂeÊ» ZÆÀe Á |¿Y|¿ ÊËÓZ] {€°¸¼Ÿ
.|¿Â‹ Ã{Z¨f‡Y Ê°Œy Ä] ¶¼ve ÉZŽƒ
¶·MÉ{ ŠËZ»M cÔaÉZ] Ä˂ne
dÌ “Á ½YÂeÊ» ÊfuY Ä] cÔaÉZ] Ä˂ne {
Á {€¯ Ã|ÅZŒ» SCA Á GCA ½Y‚Ì» €œ¿ Y Y ZÅ`Ìe¿ƒ
ZÅ`Ìe¿ƒ ¹Y|¯ {Y{ ŽÌzŒe ½YÂeÊ» ‰Á ¾ËY { ¾ÌÀr¼Å
Äf‹Y{ Ê]Ây ʏy ɀË~a \̯€e |À¿YÂeÊ» €´Ë|¼Å Z]
{» { Ä˂ne ¾ËY .(Yan and Kang, 2003) |À‹Z]
Ä] .|Àf‹Y{ €ÌiZe ÃZ̳ {€°¸¼Ÿ { į d§€³ ¹Zn¿Y ÊeZ¨
Ä] Ã|‹ ɀ̳ ÁY|¿Y cZ¨ Z] {€°¸¼Ÿ Ę]Y Y|f]Y \Ìe€e ¾ËY
®¼¯ Z] µZ»€¿ Á ŠÀe –ËY€‹ Á{ { Ä¿Z³Y|m c
Ę]Y µZ»€¿ –ËY€‹ { .|»M d‡{ Ä] ¹Z³ Ä] ¹Z³ ½Â̇€³
:(|ÀfˆÅ {Y|¿Zf‡Y \ËY€“ ļÅ) |»M d‡{ Ä] €Ë c Ä]
(1)
YN=0.25TW+0.91EN-0.71TI+0.29SF
:{Â] €Ë c Ä] ŠÀe –ËY€‹ { Ę]Y ¾ËY
(2)
YS=0.44TW+0.87EN+0.28AW+0.44SF
µZ»€¿ –ËY€‹ { {€°¸¼Ÿ \Ìe€e Ä] YS Á YN ½M { į
{Y| e SP ,ċÂy {Y| e EN ,Ä¿Y{ Y‚Å ½Á TW,ŠÀe Á
®ŒË µÂ— AW Á ÄnÀa {Y| e TI ,ċÂy { Är¸^À‡
.d‡Y
{Y| e d¨ Ä] •Â]€» cÔaÉZ] Y{¼¿ (a) 1 ¶°‹
ŠËZ»M –ËY€‹ Á{ €Å ¾Ì´¿ZÌ» ÉY€] Y ċÂy { Är¸^À‡
,|‹ Ã{Y{ ½ZŒ¿ ‚Ì¿ 2 µÁ|m { į —½Z¼Å .|Å{Ê» ½ZŒ¿
¾Ë€fŒÌ] ÉYY{ WS-82-9 Á €Ë¯ ,Y€Ì‹ ÉZÅ`Ìe¿ƒ
¾ËY ÉY€] GCA ¾Ë€f¼¯ ÉYY{ 2}M `Ìe¿ƒ Á GCA
€Ë¯ `Ìe¿ƒ Y{¼¿ ¾ËY { Ä°ÀËY Ä] ÄmÂe Z] .|¿{Â] d¨
d‡Y ¾ËY Ã|ÀÅ{ ½ZŒ¿ ,d‡Y Äf§€³ Y€« Y€Ì‹ €fˆe ®Ë{‚¿
\̯€e €´Ë|¼Å Z] |À¿YÂeÊ» Ê]Ây Ä] `Ìe¿ƒ Á{ ¾ËY į
.|ÀËZ¼¿ |Ì·Âe ɀe€] kZf¿ Á Äf‹Y{ ÊËÓZ] ʏy ɀË~a
8
ª§Â» d‡Y µÂ¼ » Z» Œ¯ { į ¶§ €yM Ê°Œy
Ô¼Ÿ Ä¿Y{ ½|‹ €a ÃÁ{ ½{€¯ ÃZe¯ ¶Ì·{ Ä] Z»Y ,|ÀfˆÅ
ª˜À» ¾ËY Z] .{Y{ |ÀÅYÂy ½ZŒ¿ {Ây Y ɀe ¾ÌËZa {€°¸¼Ÿ
€œ¿ { WS-82-9 `Ìe¿ƒ Y `Ìe¿ƒ ¾Ë€fÆ] ½YÂeÊ»
ÃÁ{ Z»Y ,{Y{ žË€‡ ʳ|̇ Á ÊÅ|¸³ Äq €³Y į d§€³
Ä] Á d‡Y Ã{€¯ š¨u –‡Âf» |u { Y {Ây Ä¿Y{ ½|‹ €a
Ä°ÀËY Ä] ÄmÂe Z] .{Y{ ‚Ì¿ Ê]Ây Ä¿Y{ Y‚Å ½Á ¶Ì·{ ¾Ì¼Å
½YZ°¼Å Á {€n» ʇ— ªÌ¬ve { ÉY{€‡ `Ìe¿ƒ
{Â] ­€fŒ» €“Zu ªÌ¬ve Á (Mojarrad et al., 2009)
|À¿Z» Ã|‹ €¯} ªÌ¬ve { `Ìe¿ƒ ¾ËY Z] ÉZÅʳ„ËÁ
ªÌ¬ve { ÊÅ|¸³€Ë{ Á |À¸] ¶°¿Y|a µÂ— ,{Zˁ ċÂy {Y| e
.|Ë{€³ Ã|ÅZŒ» ‚Ì¿ €“Zu
¾Ì/] ¶/]Z¬f» €/iY Ä/°ÀËY Ä/] Ä/mÂe Z] {€°¸¼Ÿ {» {
ÉZ//ÅÄ//˂ne { d//‡Y Ã|//‹ Y{Ê//À » –Ì//v» { `//Ìe¿ƒ
Ä/˂ne Á cZ¨/ Ê»Â/¼Ÿ ɀË~/a \/̯€e ½Y‚/Ì» Ä¿Z³Y|m
d¨/ Ä/¿Z³Y|m †¿Z/ËYÁ Ä/˂ne .|‹ Ä^‡Zv» ½M †¿ZËYÁ
€Ë{Z/¬» ½M µZ^¿{ Ä] Á ŠÀe Á µZ»€¿ –ËY€‹ { Ä¿Y{ {€°¸¼Ÿ
Ã|/‹ Ä/ËYY 4 µÁ|/m { –ËY€/‹ Á{ ¾/ËY { ¾Ë|·YÁ GCA
Y{Ê/À » cÁZ/¨e Z/Å`/Ìe¿ƒ ¾Ì/] ŠÀ/e –ËY€/‹ { .d‡Y
€/iY {ÁÊ» Zœf¿Y ÄnÌf¿ ¾ËY Y į ˜¿Z¼Å Á |Œ¿ Ã|ÅZŒ»
{ Z/»Y .{Â^¿ Y{ÊÀ » ‚Ì¿ ʏy Á ʻ¼Ÿ ɀË~a \̯€e
Á Ã{Â/] Y{Ê/À » ZÌ/ˆ] cÁZ¨e ZÅ`Ìe¿ƒ ¾Ì] µZ»€¿ –ËY€‹
Á `Ìe¿ƒ €iY ½{Â^¿ Y{ÊÀ » .{Â] ÓZ] Z̈] ‚Ì¿ GCA ºÆ‡
Z/Žƒ –ËY€/‹ ¾/ËY { į {Y{ ½ZŒ¿ ŠÀe –ËY€‹ { GCA
¾/ËY { ¶/Ì·{ ¾Ì/¼Å Ä] Á |¿{€°¿ Y|Ìa Y {Ây ½ZÌ] d€§
|/Àq €/Å .d/‡Y ¾ÌËZ/a cZ¨ ɀË~adiYÁ Ó¼ » –ËY€‹
µZ/¼ŸY –/‡Âf» ŠÀe ŠËZ»M ¾ËY { į {‹ Ê» ÉÁM{ZË
ÉY€/] ŠÀe –ËY€‹ { ɀË~adiYÁ Á GCA €iY ŠÅZ¯ .|‹
Sirault et ) d‡Y Ã|‹ ‰Y‚³ 0Ô^« cZ¨ €´Ë{ Á {€°¸¼Ÿ
ŠËY‚/§Y Ä/] {€/°¸¼Ÿ x/‡Za ,€/´Ë{ cZ/^Ÿ Ä] .(al., 2008
.d/‡Y {Zˁ \̋ Z] Á ʘy Ę]Y c Ä] Y|f]Y [M ½Y‚Ì»
Ã|‹ €f¼¯ \̋ ¾ËY {Á €eÓZ] É|u Y [M ½Y‚Ì» į Ê¿Z»
{ ¶Ì·{ ¾Ì¼Å Ä] .|f§Yʼ¿ ©Z¨eY {€°¸¼Ÿ { É{Zˁ €Ì̤e Á
{ [M ½Y‚/Ì» { ®/q¯ ÉZ/ÅÊfyYÂÀ°ËZ/¿ ,ŠÀ/e –ËY€‹
{ ±‚/] cY€/Ì̤e h/ŸZ] ,Ä/Ÿ‚» t˜/‡ { ÃZ̳ …€f‡{
.|/À¯Ê» {Zˁ Y Z˜y †¿ZËYÁ Á Ã|‹ cZ¨ €´Ë{ Á {€°¸¼Ÿ
Á {€/°¸¼Ÿ ɀË~/ad/iYÁ ŠÀ/e –ËY€/‹ { ¶Ì·{ ¾Ì¼Å Ä]
1391 / µÁY ÃZ¼‹ /¹Á{ µZ‡ /cÔ£ cZ¬Ì¬ve
9
ZÆ¿M F1 Á ¾Ë|·YÁ { µZ»€¿ Á ŠÀe –ËY€‹ Á{ { Ä¿Y{ {€°¸¼Ÿ cZ ]€» ¾Ì´¿ZÌ» -4 µÁ|m
Table 4. Mean squares of grain yield at stress and normal conditions in parents and their F1
cY€Ì̤e ž]ZÀ»
S.O.V
`Ìe¿ƒ
Genotype
­Â¸]
Block
Z˜y
Erorr
GCA
SCA
É{YM Äm{
µZ»€¿ –ËY€‹
ŠÀe –ËY€‹
df
Normal condition
Stress condition
**
27
45.5
12 n
2
13.8 ns
2.6 ns
54
20.8
11.2
**
17.9 ns
10.4 ns
129.5
21.5 ns
6
21
µZ»€¿ Á ŠÀe –ËY€‹ Á{ { ¾Ë|·YÁ GCA €Ë{Z¬»
GCA values of parents at stress and normal conditions
`Ìe¿ƒ
µZ»€¿ –ËY€‹
ŠÀe –ËY€‹
Genotype
Normal condition
Stress condition
- 0.5 ns
- 0.19 ns
3**
0.1 ns
-2.3**
- 0.01 ns
-2.3**
1.1 ns
2.9**
- 0.8 ns
- 0.05 ns
0.9 ns
- 0.86 ns
- 1.05 ns
2}M
Azar 2
€Ë¯
Kavir
Y€Ì‹
Shiraz
ÉY{€‡
ns
Sardari
ws-82-9
ws-82-7
ws-82-13
Non significant.
* and **
.Y{ÊÀ » €Ì£ ns
Significant at 0.05 and 0.01 probability levels, respectively.
¶·MÉ{ ŠËZ»M Ê°Ìf¿ƒ ÉZŀf»YZa {ÁM€]
Ä] ,¶·MÉ{ ÉZÅÃ{Y{ Ê°Ìf¿ƒ ÂÀe Ä] •Â]€» ÉZŀf»YZa
Ä^‡Zv» (Mather and Jinks, 1972) ‚°ÀÌm Á €f» ‰Á
½Â̇€³ –y ÄnÀa {Y| e {» { .|‹ ÄËYY 5 µÁ|m { Á
®Ë {|Ÿ Z] \̋ cÁZ¨e Á Ã{Â] €¨ Y cÁZ¨f» Ê^̋ ÉYY{
µ|» į d‡Y ¾ËY Ã|ÀÅ{ ½ZŒ¿ į dˆÌ¿ Y{ÊÀ » ‚Ì¿
dËZ¨¯ d¨ ¾ËY ÉZÅÃ{Y{ {» { dÌ^·Z£ -ʌËY‚§Y
½ZŒ¿ į {Â] 0/77 d¨ ¾ËY { dÌ^·Z£ Äm{ .|À¯Ê»
{ .{Â] d¨ ¾ËY µ€fÀ¯ { ½ƒ ¶¼Ÿ Ê^ˆ¿ dÌ^·Z£ Ã|ÀÅ{
Á Ä¿Y{Y‚Å ½Á ,ċÂy { Är¸^À‡ {Y| e ,ċÂy {Y| e {»
dËZ¨¯ dÌ^·Z£ -ʌËY‚§Y µ|» µZ»€¿ –ËY€‹ { {€°¸¼Ÿ
ÉY€] Y{ÊÀ » ɁZf‡ ÊaY €iY {ÂmÁ µZ¼fuY Á |À¯Ê¼¿
c Ä] ½YÂeʼ¿ ¾ËY€]ZÀ] Á {Y{ {ÂmÁ cZ¨ ¾ËY µ€fÀ¯
.0/01 Á 0/05 t˜‡ { Y{ÊÀ » \Ìe€e Ä]
** *
Á
\̯€e ‚Ì¿ ÉY{€‡ €fˆe Z] €Ë¯ `Ìe¿ƒ ,½M €] ÃÁԟ
{Y| e ŠËY‚§Y ÉY€] ½YÂeÊ» į {Y{ ½ZŒ¿ Ê]Ây ɀË~a
Ã{Z¨f‡Y €Ë¯ `Ìe¿ƒ Y ,ÉY{€‡ `Ìe¿ƒ { ZÅÄr¸^À‡
€Å ¾Ì´¿ZÌ» ÉY€] ċÂy {Y| e Ä] •Â]€» (b) 1 ¶°‹ .{€¯
ċÂy {Y| e ÉYY{ į ÉY{€‡ `Ìe¿ƒ Y .d‡Y –ËY€‹ Á{
ċÂy º¯ {Y| e ½{€¯ ¥€—€] ÉY€] ½YÂe Ê» d‡Y ÊËÓZ]
{» { .{€¯ Ã{Z¨f‡Y WS-82-9 Á 2}M `Ìe¿ƒ Á{ {
Á WS-82-9¾Ì] ɀË~a \̯€e ¾Ë€fŒÌ] Ä¿Y{ Y‚Å ½Á
.(c 1 ¶°‹) d‹Y{ {ÂmÁ Y€Ì‹ Á 2}M ,€Ë¯ ÉZÅ `Ìe¿ƒ
¦Ì “ Ä¿Y{Y‚Å ½Á €œ¿ Y Y€Ì‹ `Ìe¿ƒ Ä°ÀËY Ä] ÄmÂe Z]
Ê«Ôe ½M sԏY ÉY€] ‰Á ¾Ë€fÆ] |‡ Ê» €œ¿ Ä] ,d‡Y
.|‹Z] WS-82-9 `Ìe¿ƒ Z]
¶·MÉ{ ‰Á Z] ½Z¿ ¹|À³ { cZ¨ Êy€] gYÂe Ä ·Z˜» :½YZ°¼Å Á ÊÀ̌»Y
{ .{€/¯ Ã{Z¨f‡Y €Ë¯ Á WS-82-9 ÉZÅ`Ìe¿ƒ Y ½YÂeÊ»
Ê«Ôe ½M sԏY ÉY€] Ê«Ôe ¾Ë€fÆ] Ä¿Y{ ½|‹€a ÃÁ{ {»
`/Ìe¿ƒ WS ÃÁ€/³ Y Â/¼n» { .{Â/] WS-82-7 ׀˯
Ä/ˆËZ¬» { ŠËZ»M ¾ËY { .{Â] `Ìe¿ƒ ¾Ë€fÆ] WS-82-9
{ `/Ìe¿ƒ ¾/ËY ¦ /“ d¨³ ½YÂf] |ËZ‹ ZÅ`Ìe¿ƒ €´Ë{ Z]
`Ìe¿ƒ ¾ËY .{Â] ÃZe¯ ¶°¿Y|a µÂ— Á º¯ ÁZ] ċÂy {Y| e
Z/] Y€Ë .d‹Y{ Ê]Ây Z̈] dÌ “Á ®ËƒÂ·ÂÀ§ cZ¨ €œ¿ Y
Äf/‹Y|¿ ÊÅZe¯ ½|‹€a ÃÁ{ Z»Y d‹Y{ žË€‡ ÊÅ|¸³ Ä°ÀËY
Ä/¯ ÉÂ/— Ä] Ã|¿Z‡€¿ ¹Z¼eY Ä] žË€‡ Y {Ây É|‹ ÃÁ{ Á
ÃÁ{ µÂ/— Á Á 69 ¾Ë{Á€/§ µÁY Y ½M É|‹ ÃÁ{ µÂ—
€/œ¿ ¾/ËY Y Ê/³„ËÁ ¾/ËY .{Â/] Á 26 ½M { Ä/¿Y{ ½|‹€a
|/u Y ŠÌ/] Ê/‡{Á ¶/Ì·{ Ä/] Z/ÅÄ/¿Y{ į {Y{ d̼ÅY
ÉZ/Å`/Ìe¿ƒ d¨³ ½YÂeÊ» Â¼n» { .|¿Â‹Ê¼¿ Ã|̯Á€q
Ê]Â/y ÉZ/ÅÄ/zŒ» ÉY{€/‡ Á €Ë¯ ,2}M |À¿Z» ʼË|«
Z/Æ¿M Y |/Ë|m ÉZ/Å`/Ìe¿ƒ sÔ/Y { ½YÂ/eÊ/» į |¿Y{
WS ÃÁ€/³ ¾Ì/] { ‚/Ì¿ WS-82-9 `/Ìe¿ƒ .{€¯ Ã{Z¨f‡Y
Ê°/Œy ŠÀe –ËY€‹ { dŒ¯ Ä̏Âe ÉY€] `Ìe¿ƒ ¾Ë€fÆ]
.d‡Y
ÉY‚´‡Zb‡
Š//z] Y |//À¿Y{Ê//» ¹Ó {Â//y €//] Ä//·Z¬» ½Z³|//¿Z´¿
Ä/ËÁ Ä/] ~/] Á µZÆ¿ ÄÌÆe Á sԏY Ĉ‡Â» cÔ£ cZ¬Ì¬ve
~/] ¾f/‹Y~³ Z/ÌfyY { ÉY€/] ½Z/̨n¿ {³ €f¯{ ÉZ«M
{Â//» { ÊËZ//¼ÀÅY ¾Ì//Àr¼Å Á WS ÃÁ€//³ ÉZ//Å`//Ìe¿ƒ
.|ÀËZ¼¿ €°Œe ZÅ`Ìe¿ƒ [Zzf¿Y
10
.{ ¾Ì/¼ze ¶/·M É{ ‰Á Z/] Y Ê/°Ìf¿ƒ ÉZŀf»YZa ªÌ«{
¶°¿Y|/a µÂ/— Ä/] •Â]€» ÉZŀf»YZa €´Ë{ Á ½ƒ ¶¼Ÿ ÃÂv¿
ÉZ/ŀf»YZ/a ‚/Ì¿ 5 µÁ|/m { .{Â] ÃZ̳ Z¨eY ÄÌ^‹ Z̈]
{ Ä/¯ |Å{Ê» ½ZŒ¿ ®ŒË ÉY€] Ã|‹ Ã{ ¾Ì¼ze Ê°Ìf¿ƒ
d/Ì^·Z£ Ä/m{ .|/À¯ Ê» dËZ¨¯ dÌ^·Z£ -ʌËY‚§Y µ|» ½M
Ä/] €f/ŒÌ] ½ƒ ¶/¼Ÿ |/Å{Ê/» ½Z/Œ¿ į {Â] ®Ë Y €fŒÌ]
{ SCA €iY Ê^ˆ¿ ½{Â]ÓZ] .d‡Y Ã{Â] dÌ^·Z£ ©Â§ c
¾/ËY ‚Ì¿ (1µÁ|m) ¶·M É{ ÉZÅ Ã{Y{ †¿ZËYÁ Ä˂ne µÁ|m
µÂ— Z] ®ŒË ¾Ë€e¶Ë— ÉYY{ €Ë¯ .|À¯Ê» |ÌWZe Y Äf°¿
Z/] ®/ŒË ¾Ë€e ÃZe¯ ÉYY{ 2}M `Ìe¿ƒ Á €f»Êf¿Z‡ 8/1
.d‡Y €f»Êf¿Z‡ 6/7 µÂ—
į µMÃ|ËY `Ìe¿ƒ ®Ë į {Y{ ½ZŒ¿ ʸ¯ — Ä] lËZf¿
|/‹Z] Ê°/Œy ŠÀ/e Z/] –^e€/» [¸˜» cZ¨ ļŠÉYY{
Ä/‹Ây €fŒÌ] {Y| e |Ì·Âe ÉY€] `Ìe¿ƒ ¾Ë€fÆ] .{Y|¿ {ÂmÁ
d§€³ €œ¿ { ÉY{€‡ Á 2 }M ÉZÅ`Ìe¿ƒ ½YÂeÊ» Y ÁZ]
½YÂ/eÊ» ,ZÅ`Ìe¿ƒ €ËZ‡ Z] ZÆ¿M SCA €Ë{Z¬» Ä] ÄmÂe Z] į
sÔ/Y ÉY€/] Y €Ë¯ × 2}M Á Y€Ì‹ × ÉY{€‡ ÉZÅÊ«Ôe
{ Är¸^À/‡ {Y|/ e sÔ/Y ÉY€/] .{€/¯ {ZÆÀŒÌa d¨ ¾ËY
Á {€/¯ Ã{Z¨f‡Y WS-82-9 Á Y€Ì‹ ,€Ë¯ Y ½YÂeÊ» ċÂy
Ä/¿Y{ Y‚/Å ½Á sÔ/Y ÉY€/] .{Y{ Ê/«Ôe ÉY{€‡ Z] Y ZÆ¿M
Ä/] Ä/mÂe Z/] Á {€¯ Ã{Z¨f‡Y WS-82-9 `Ìe¿ƒ Y ½YÂe Ê»
Y {Â/‹Ê/» ÄÌ/Âe Z/Å`/Ìe¿ƒ €ËZ/‡ Z/] ½M SCA €Ë{Z¬»
ÉY€/] WS-82-9 × 2 }M Á WS-82-9 × €ËÂ/¯ ÉZÅÊ«Ôe
ŠËY‚/§Y ÉY€/] .{Â/‹ Ã{Z¨f‡Y Ä¿Y{Y‚Å ½Á ŠËY‚§Y Á sԏY
|/¿YÂeÊ/» Ê°/Œy ŠÀ/e Ä] ¶¼ve €œ¿ Y į ¶°¿Y|a µÂ—
ÉY€/] .{€/¯ Ã{Z¨f/‡Y 2}M `Ìe¿ƒ Y ½YÂe Ê» |‹Z] [¸˜»
‚Ì¿ Ä¿Y{ ½|‹ €a ÃÁ{ ¾ÌÀr¼Å Á ʳ|̇ Á ÊÅ|¸³ sԏY
1391 / µÁY ÃZ¼‹ /¹Á{ µZ‡ /cÔ£ cZ¬Ì¬ve
11
b
Which wins where or which is best for what
a
Which wins where or which is best for what
Which wins where or which is best for what
d
Which wins where or which is best for what
c
e
Which wins where or which is best for what
½Á (c) (–ËY€‹ Á{ ¾Ì´¿ZÌ») ċÂy {Y| e (b) ,(–ËY€‹ Á{ ¾Ì´¿ZÌ») ċÂy { Är¸^À‡ {Y| e (a) :cZ¨ ÉY€] cÔaÉZ] Y{¼¿ -1 ¶°‹
Ê ¸“ |Àq ¶yY{ ZË ZŅY { ZÅ`Ìe¿ƒ .µZ»€¿ –ËY€‹ { ÄnÀa {Y| e (e) ŠÀe –ËY€‹ { ®ŒË µÂ— (d) (–ËY€‹ Á{ ¾Ì´¿ZÌ») Ä¿Y{ Y‚Å
WS- :W9 ,WS-82-7 :W7 ,ÉY{€‡ SA ,Y€Ì‹ SH ,€Ë¯ KA ,2}M AZ :Y |ÀeZ^Ÿ ZÅ`Ìe¿ƒ .|¿YÄf§€³ Y€« ½M Y ½Á€Ì] Zŀfˆe Á
WS-82-13 :W13 ,82-9
Figure 1. Biplot graph for traits: (a) Spikelet number per spike (mean of two conditions), (b) Spike number
(mean of two conditions), (c) Thousand grain weight (mean of two conditions), (d) Awn length in drought stress
condition (e) Tiller number in normal condition. Genotypes are either located at corners or in polygon while
testers are outside of polygon. Genotypes consisted of: AZ, Azar2; KA, Kavir; SH, Shiraz; SA, Sardari; W7,
WS-82-7; W9, WS-82-9, W13: WS-82-13
¶·MÉ{ ‰Á Z] ½Z¿ ¹|À³ { cZ¨ Êy€] gYÂe Ä ·Z˜» :½YZ°¼Å Á ÊÀ̌»Y
12
½Z¿ ¹|À³ 7×7 ¶·MÉ{ s€— { ‚°ÀÌm Á €f» ‰Á Z] Ã|‹ {ÁM€] Ê°Ìf¿ƒ ÉZŀf»YZa -5 µÁ|m
Table 5. Estimated genetic parameters by Mather and Jinks method in 7×7 wheat diallel design
ɀË~a diYÁ
ÉZÀ^» €]) ʏy
(ÄeÂ] 10 ¾Ì´¿ZÌ»
d¨
Á ½Â̇€³ \ˀ“
[€“¶Zu
ZŶ·M Ê¿YÁY€§
dÌ^·Z£ Äm{
5Degree of
Allel
frequency
product
dominance
0.7
0.12
0.36
1 {|Ÿ
¾Ì´¿ZÌ»
cZ ]€»
½Â̇€³
Regression
coefficient and it’s
significant
difference from 1
Regression
mean
squares
0.77
0.99 ns
17.2**
0.14
0.9
0.65 ns
1.8 ns
0.97
0.03
0.67
0.84 ns
1641**
0.97
0.03
0.72
0.93 ns
312
0.86
0.16
0.91
0.27
0.11 ns
0.8
0.12
0.8
0.33 ns
7.4 ns
0.52
0.2
1.3
0.95 ns
0.04**
0.76
0.11
0.79
0.83 ns
23
0.71
0.18
0.95
0.78 ns
20.6
0.46
0.21
1.33
1.03 ns
17
0.12
0.76
1.82
0.61 ns
13.1**
0.55
0.08
0.93
0.53 ns
4.6 ns
Narrow sense
heritability (per 10
plants mean)
Trait
ÄnÀa {Y| e
Y ½M Y{ÊÀ » cÁZ¨e
Tiller number
ċÂy {Y| e
Spike number
ÄeÂ] Z¨eY
Plant Height
¶°¿Y|a µÂ—
**
Peduncle length
ċÂy { Är¸^À‡ {Y| e
*
Spikelet no. per spike
Ä¿Y{Y‚Å ½Á
Thousand grain weight
®ŒË µÂ—
Awn length
ÊÅ|¸³ xËZe
**
Flowering time
ʳ|̇ ½Z»
**
Maturity time
Ä¿Y{ ½|‹ €a ÃÁ{
**
Grain filling period
ŠÀe –ËY€‹ { {€°¸¼Ÿ
Yield in stress condition
µZ»€¿ –WY€‹ { {€°¸¼Ÿ
Yield in normal condition
ns
*
Non significant.
**
and : Significant at 0.05 and 0.01 probability levels, respectively.
.Y{ÊÀ » €Ì£ ns
.0/01 Á 0/05 t˜‡ { Y{ÊÀ » \Ìe€e Ä] ** Á*
13
1391 / µÁY ÃZ¼‹ /¹Á{ µZ‡ /cÔ£ cZ¬Ì¬ve
References
Abate, Z. and McKendry, A. 2010. Diallel analysis of Fusarium head blight resistance in genetically
diverse winter wheat germplasm. Euphytica 175: 409-421.
Ahmadi, A., Joudi, M. and Janmohammadi, M. 2009. Late defoliation and wheat yield: Little
evidence of post-anthesis source limitation. Field Crops Research 113: 90-93.
Arjenaki, F. G., Jabbari, R. and Morshedi, A. 2012. Evaluation of Drought Stress on Relative
Water Content, Chlorophyll Content and Mineral Elements of Wheat (Triticum aestivum L.)
Varieties. International Journal of Agriculture and Crop Sciences 4 (11): 726-729.
Babu, R. C., Zhang, J., Blum, A., Ho, T. H. D., Wu, R. and Nguyen, H. T. 2004. HVA1, a LEA
gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell
membrane protection. Plant Science 166: 855–862.
Barnard, A. D., Labuschagne, M. T. and Niekerk, H. A. 2002. Heritability estimates of bread wheat
quality traits in the Western Cape province of South Africa. Euphytica 127: 115-122.
Bazargani, M. M., Sarhadi, E., Bushehri, A. A. S., Matros, A., Mock, H. P., Naghavi, M. R.,
Hajihoseini, V., Mardi, M., Hajirezaei, M. R. and Moradi, F. 2011. A proteomics view on the
role of drought-induced senescence and oxidative stress defense in enhanced stem reserves
remobilization in wheat. Journal of Proteomics 74 (10): 1959–1973.
Blum, A. 2005. Drought resistance, water-use efficiency, and yield potential-are they compatible,
dissonant, or mutually exclusive? Australian Journal of Agricultural Research 56: 1159-1168.
Blum, A. 2011. Plant breeding for water-limited environments. Springer Verlag.
Cruz-Aguado, J. A., Rodeas, R., Pearez, I. P. and Dorado, M. 2000. Morphological characteristics
and yield components associated with accumulation and loss of dry mass in the internodes of
wheat. Field Crops Research 66: 129-139.
Dere, S. and Yildirim, M. B. 2006. Inheritance of plant height, tiller number per plant, spike height
and 1000-kernel weight in a 8x8 diallel cross population of bread wheat. Cereal Research
Communications 34: 965-972.
El-Maghraby, M. A., Moussa, M. E., Hana, N. S. and Agrama, H. A. 2005. Combining ability
under drought stress relative to SSR diversity in common wheat. Euphytica 141: 301-308.
Gorny, A. G., Banaszak, Z., Lugowska, B. and Ratajczak, D. 2011. Inheritance of the efficiency of
nitrogen uptake and utilization in winter wheat (Triticum aestivum L.) under diverse nutrition
levels. Euphytica 177: 191-206.
Griffing, B. 1956. Concept of general and specific combining ability in relation to diallel crossing
systems. Australian Journal of Biological Sciences 9: 463-493.
Hailu, F., Johansson, E. and Merker, A. 2010. Patterns of phenotypic diversity for phenologic and
qualitative traits in Ethiopian tetraploid wheat germplasm. Genetic Resources and Crop
Evolution 57: 781-790.
Hayman, B. I. 1960. The theory and analysis of diallel crosses. III. Genetics 45 (2): 155-172.
Jinks, J. L. 1954. The analysis of continuous variation in a diallel cross of Nicotiana rustica varieties.
Genetics 39: 767-788.
Joshi, S. K., Sharma, S. N., Singhania, D. L. and Sain, R. S. 2004. Combining ability in the F1 and
F2 generations of diallel cross in hexaploid wheat (Triticum aestivum L.). Hereditas 141: 115-121.
Khan, A. A., Iqbal, M., Ali, Z. and Athar, M. 2010. Diallel analysis of quantitative traits in
hexaploid wheat (Triticum aestivum L.). Plant Biosystems 144: 373-380.
Mather, K. and Jinks, J. L. 1982 . Biometrical Genetics. (3rd ed.). Chapman and Hall. London.
Mazaheri, D. and Majnoon Hosseini, N. 2001. Principles of general agriculture. Tehran University.
(In Persian).
Mohammadi, H., Emami, M. K. and Rezai, A. 2007. Estimation of genetic parameters for wheat
grain yield and its components using diallel crosses. Journal of Science and Technology of
Agriculture and Natural Resources 11: 157-165. (In Persian).
Mohammadi, S. H. and Emami, M. K. 2008. Graphical analysis for grain yield of wheat and its
components using diallel crosses. Seed and Plant 24: 475-486. (In Persian).
¶·MÉ{ ‰Á Z] ½Z¿ ¹|À³ { cZ¨ Êy€] gYÂe Ä ·Z˜» :½YZ°¼Å Á ÊÀ̌»Y
14
Mohsenabadi, G. R., Jahansooz, M. R., Chaichi, M. R., Mashhadi, H. R., Liaghat, A. M. and
Savaghebi, G. R. 2008. Evaluation of barley-vetch intercrop at different nitrogen rates. Journal
of Agricultural Science 10: 23-31. (In Persian).
Mojarrad, T. and Ghannadha, M. R. 2008. Diallel analysis for estimation of genetic parameters in
relation to traits of wheat height in normal and drought conditions. Journal of Science and
Technology of Agriculture and Natural Resources 12: 143-155. (In Persian).
Mojarrad, M., Bihamta, M. R. and Khodarahmi M. 2009. Investigation of genetic parameters of
some wheat traits using diallel method measuring at normal and drought stress conditions. Iranian
Journal of Field Crop Science 40: 13-24 (In Persian).
Rebetzke, G. J., Richards, R. A., Condon, A. G. and Farquhar, G. D. 2006. Inheritance of carbon
isotope discrimination in bread wheat (Triticum aestivum L.). Euphytica 150: 97-106.
Sayar, R., Khemira, H. and Kharrat, M. 2007. Inheritance of deeper root length and grain yield in
half-diallel durum wheat (Triticum durum) crosses. Annals of Applied Biology 151: 213-220.
Sirault, X. R. R., Condon, A. G., Rebetzke, G. J. and Farquhar, G. D. 2008. Genetic analysis of
leaf rolling in wheat. 11th International Weat Genetics Symposium, Sydney University, Australia.
Topal, A., Aydin, C., Akgun, N. and Babaoglu, M. 2004. Diallel cross analysis in durum wheat
(Triticum durum Desf.): Identification of best parents for some kernel physical features. Field
Crops Research 87: 1-12.
Yan, W. and Kang, M. S. 2003. GGE biplot analysis: A graphical tool for breeders, geneticists, and
agronomists. CRC PRESS.
Zare, M., Choukan, R., Bihamta, M. R. and Hervan, E. M. 2010. Estimation of genetic parameters
and general and specific combining abilities in maize using a diallel design. Iranian Journal of
Crop Sciences 12: 318-332 (In Persian).
15
Cereal Research, Vol. 2, No. 1, 2012
Inheritance of some traits in bread wheat using diallel method at
normal and drought stress conditions
Hosseinali Ramshini1Ï, Mehdi Fazel Najafabadi1 and Mohammad Reza Bihamte2
1. Assist. Prof., Dept. of Agronomy Sciences and Plant Breeding, Aburaihan Campus, Tehran
University, 3. Prof., Agriculture and Natural Resources Campus, Tehran University
(Received: August 6, 2012- Accepted: October 30, 2012)
Abstract
Breeding for drought tolerance is one of the most efficient ways for preventing yield loss in dry
conditions. Diallel method is one of the best methods for genetic evaluation of germplasm before
starting of breeding program. In this experiment seven bread wheat genotypes including old genotypes
and elite lines were crossed in a half diallel mating design. Parents and F1s were planted at stress and
normal condition in a RCBD design with three replications. In addition to pheonologic recording,
morphological traits and grain yield were measured after harvest. Analysis of variance for diallel
experiment showed that the effect of GCA effect was significant for all traits that imply there is
significant additive effect in controlling of all traits. Results showed that each genotype is good
considering one or some traits. Using biplot analysis, parents with high SCA were recognized for
different traits. For spikelets number per ear, ear number and thousand weight crosses Kavir×Shiraz,
Sardari×Shiraz and Azar2×WS-82-9 had the highest SCA. Mather and Jinks graphical analysis
showed the adequacy of additive-dominance gene action model. Degree of dominance was between
from 0 to 1 for most traits which showed the gene action is almost partial dominance. Some genotypes
like WS-82-9, Sardari and Kavir can be used for improving of traits thousand weight, ear number and
spikelets in ear in both conditions, respectively. Also WS-82-9 is an elite line that can be acceptable
genotype for dry condition.
Keywords: Gene action, General and specific combining ability, Narrow sense heritability
*Corresponding author: [email protected]