Download presentatie - Life Science Technology

Next Generation Sequencing Technology
Research and Clinical applications
Ron M. Kerkhoven, PhD
Genomics Core Facility
Toen en nu
2013
Aantal bedden
1915
17
180
Aantal nieuwe patiënten
1915
17
6000
Aantal bestralingen
1915
2747
70000
Aantal medewerkers
1916
10
3000
Aantal wetenschappelijk
publicaties
1917
11
508
Aantal wetenschappers
1913
2
720
Aantal leden van de medische staf 1913
2
155
98
5000
Aantal operaties
1915
The Netherlands Cancer Institute
Technology development at the NKI-AvL
Next Gen Sequencing
numbers
Microarrays
2001
Mammaprint
2006
2009
2013
200.000.000 per experiment
50 - 300 bp each
Clusters
8 lanes
1 lane
HiSeq2000
200 milion reads/lane
MiSeq
20 milion reads/lane
Sheared genomic DNA
Genomic DNA
library preparation
end repair, A-overhang
A
A
T
adapter ligation
PCR 7 cycles
P5
fragments of 200-400 bp
P7
High Coverage
Sequencing
window
IGV (integrative genomics viewer)
www.broadinstitute.org/igv
Chromosome 17
scale
0-490
start
end
reads piled up
bases
Gene:TP53
amino acids
(exon)
Reference sequence
intron
Cumulative output of sequence data (bp) by the GCF
20.000.000.000.000 bp
385 samples p.m.
Cancer Clinic
Research Lab
RNAseq
CNVseq
ChIP
Capture approaches
-Exome, Kinome
-Full Genome
-T-Cell Repertoire
-Fanconi family
Haploscreen
MeDIP
small RNA
Haloplex
Nextera
FAIRE
shRNA
Mate Pair
TRIP
Cell barcoding
CNVseq
BRCA1 on FFPE samples
BRCA2 on FFPE samples
Next Generation Sequencing
Amplicon seq
Illumina Cancer Panel on FFPE
Scientific
investigation
Patient
Capture approaches
Diagnostics 178 gene Cancer Panel
DNA and RNA capture on FFPE
Actionable
mutations
Het Nederlandse Kanker InstituutAntoni van Leeuwenhoek Ziekenhuis,
ErasmusMC Daniel den Hoed
Oncologisch Centrum
UMC Utrecht
RNA-Seq (gene expression profiling)
Degraded RNA (FFPE)
Fresh total RNA
200 ng – 1 ug total RNA
500 ng - 1 ug total RNA
mRNA selection
rRNA removal ( RiboZero)
fragmentation
SciClone
cDNA synthesis (random priming)
End repair, A overhang, Adapter ligation, PCR
1 HiSeq lane, 10 samples
Stranded RNA-Seq
Stranded RNA-Seq
RNA-Seq is very reproducible
1
2
3
4
5
6
1
2
3
4
5
6
Research Lab
Cancer Clinic
RNAseq
CNVseq
ChIP
Capture approaches
-Exome, Kinome
-Full Genome
-T-Cell Repertoire
-Fanconi family
Haploscreen
MeDIP
small RNA
Haloplex
Nextera
FAIRE
shRNA
Mate Pair
TRIP
Cell barcoding
CNVseq
BRCA1
BRCA2
Next Generation Sequencing
Amplicon seq
Illumina Cancer Panel on FFPE
Scientific
investigation
Patient
Capture approaches
Diagnostics 178 gene Cancer Panel
DNA and RNA capture on FFPE
ChIPseq Chromatin Immuno Precipitation to map “DNA binding sites.”
FAIRE Formaldehyde Assisted Isolation of Regulatory Elements to map “open chromatin.”
FAIRE signal at
AR peaks
Human prostate cancer specimen – 14G biopsy
FAIRE
Androgen Receptor ChIP
XBP1
FAIRE
Androgen Receptor ChIP
KLK3
KLK2
KLKP1
FAIRE
Androgen Receptor ChIP
UMODL1
-5kb
+5kb
Wilbert Zwart, Suzan Stelloo, Gaetano Gargiulo, Bauxu Pang
Cancer Clinic
Research Lab
RNAseq
CNVseq
ChIP
Capture approaches
-Exome, Kinome
-Full Genome
-T-Cell Repertoire
-Fanconi family
Haploscreen
MeDIP
small RNA
Haloplex
Nextera
FAIRE
shRNA
Mate Pair
TRIP
Cell barcoding
CNVseq
BRCA1
BRCA2
Next Generation Sequencing
Amplicon seq
Illumina Cancer Panel on FFPE
Scientific
investigation
Patient
Capture approaches
Diagnostics 178 gene Cancer Panel
DNA and RNA capture on FFPE
Carsten Linnemann
High-throughput identification of antigen-specific TCRs by TCR gene capture
Carsten Linnemann, Bianca Heemskerk, Pia Kvistborg, Roelof J C Kluin, Dmitriy A Bolotin, Xiaojing Chen, Kaspar Bresser, Marja Nieuwland, Remko Schotte,
Samira Michels, Raquel Gomez-Eerland, Lorenz Jahn, Pleun Hombrink, Nicolas Legrand, Chengyi Jenny Shu, Ilgar Z Mamedov, Arno Velds, Christian U Blank, John B
A G Haanen, Maria A Turchaninova, Ron M Kerkhoven, Hergen Spits, Sine Reker Hadrup, Mirjam H M Heemskerk, Thomas Blankenstein et al.
Nature Medicine (2013 )doi:10.1038/nm.3359
http://www.biology.arizona.edu/immunology/tutorials/immunology
Rearrangement of the T-cell receptor locus
T- cell repertoire analysis
Research Lab
Cancer Clinic
RNAseq
CNVseq
ChIP
Capture approaches
-Exome, Kinome
-Full Genome
-T-Cell Repertoire
-Fanconi family
Haploscreen
MeDIP
small RNA
Haloplex
Nextera
FAIRE
shRNA
Mate Pair
TRIP
Cell barcoding
CNVseq
BRCA1
BRCA2
Next Generation Sequencing
Amplicon seq
Illumina Cancer Panel on FFPE
Scientific
investigation
Patient
Capture approaches
Diagnostics 178 gene Cancer Panel
DNA and RNA capture on FFPE
How does genome
organization influence
gene regulation?
Waseem Akthar
Aleksey Pindyurin
same gene in different genomic neighborhoods results in different phenotype
TRIP
MiSeq SR 76 bp
Sample
index
vector
barcode
vector
Reporter expression patterns reflect
chromatin domain organization
permissive
non-permissive
Research Lab
Cancer Clinic
RNAseq
CNVseq
ChIP
Capture approaches
-Exome, Kinome
-Full Genome
-T-Cell Repertoire
-Fanconi family
Haploscreen
MeDIP
small RNA
Haloplex
Nextera
FAIRE
shRNA
Mate Pair
TRIP
Cell barcoding
CNVseq
BRCA1
BRCA2
Next Generation Sequencing
Amplicon seq
Illumina Cancer Panel on FFPE
Scientific
investigation
Patient
Capture approaches
Diagnostics 178 gene Cancer Panel
DNA and RNA capture on FFPE
Translational
results
Patient
Treatment
Short hairpin RNA screens
Roderick Beijersbergen, Sid Huang
http://www.uni-konstanz.de/FuF/chemie/jhartig/
Reagent collections at the NKI screening facility
NKI shRNA libraries
Open Biosystems
TRC 1.0
TRC 2.0
TransOmic
24.000 vectors
28.000 vectors
against 8.000 human genes
against 14.000 mouse genes
~ 85.000 miR-shRNA vectors against 20.000 genes
~ 85.000 vectors
against 16.000 mouse genes
~ 130.000 shRNA vectors
against 20.000 human genes
~
2.600 miR-shRNA vectors against human kinome (~ 700 genes)
Subcollections of shRNA libraries:
Kinome
DNA damage
DeUbiquitinating enzymes
Phosphatases
Chromatin Modifiers
PI3K & MAPK interaction network
WNT signalling
(human & mouse)
(human & mouse)
(human)
(human)
(human)
(human)
(mouse)
Roderick Beijersbergen / René Bernards
Short hairpin RNA screens
Genomic DNA from cell cultures with integrated viral DNA
Single Read 51 bp sequencing
Seq primer
P5
index
Roderick Beijersbergen, Sid Huang, Gijs van Haaften
P7
Targeted agents: dramatic, but short-lived responses
Melanoma treated with Vemurafenib
Progression Free Survival
Chapman et al., N Engl J Med 2011
Constitutive active kinase of mutant BRAFV600E is inhibited by Vemurafenib
Differential response of BRAF inhibition in BRAF
mutant melanoma versus colon cancer
Vemurafenib (PLX4032) - A selective BRAFV600E inhibitor
response rate in BRAFV600E-positive tumors
90%
80%
81%
70%
N Engl J Med. 2010 363:809-19
Kopetz et al., ASCO 2010
60%
50%
40%
30%
20%
5.20%
10%
0%
Melanoma
Colon cancer
Inhibition of which kinase synergizes with PLX
in BRAF mutant CRC (colorectal carcinoma)?
(Colon cancer cells)
shRNA drop out screen
Synthetic Lethality:
two pathways blocked to kill cancer cells
VACO cells (Colorectal carcinoma cells) undergo apoptosis due to synergy of two treatments
VACO cells (BRAFV600E)
Vemurafenib
EGFR inhibitors
Cetuximab 1.25 mg/ml (MoAb)
Gefitinib 0.125 µM (TKI)
EGFR and BRAF inhibition synergize to induce apoptosis
and suppress BRAFV600E CRC tumor growth
Prahallad et al, Nature 2012
Cleaved PARP is a hallmark of apoptosis
Timeline BRAF colon cancer project
Publication
March 2012
2011
Start funding
research project
January 2011
37
First clinical responses
March 2013
2012
First patient in trial
at NKI
November 2012
2013
AvL
Patient samples
Pathology &
Molecular
Diagnostics
clinical samples
Treatment
decision
RNA/DNA
FF / FFPE
Tumor
sequencing
board
178 cancer
genes
capture
on tumor DNA (mutations)
on tumor RNA (translocations)
Sample preparation
Sequencing on HiSeq or MiSeq
Genomics
Core
Facility
Primary Analysis
Pipelines
Sequence data
Variant calls
Agent
1 Ado-trastuzumab emtansine (Kadcyla)
2 Axitinib (Inlyta)
3 Bevacizumab (Avastin)
Target(s)
HER2 (ERBB2/neu)
KIT, PDGFRβ, VEGFR1/2/3
VEGF ligand
4 Bosutinib (Bosulif)
5 Cabozantinib (Cometriq)
6 Cetuximab (Erbitux)
ABL
FLT3, KIT, MET, RET, VEGFR2
EGFR (HER1/ERBB1)
7 Crizotinib (Xalkori)
8 Dasatinib (Sprycel)
ALK, MET
ABL
9 Erlotinib (Tarceva)
EGFR (HER1/ERBB1)
10 Everolimus (Afinitor)
mTOR
11 Gefitinib (Iressa)
12 Imatinib (Gleevec)
EGFR (HER1/ERBB1)
KIT, PDGFR, ABL
13 Ipilimumab (Yervoy)
14 Lapatinib (Tykerb)
15 Nilotinib (Tasigna)
16 Panitumumab (Vectibix)
17 Pazopanib (Votrient)
18 Ponatinib (Iclusig)
CTLA-4
HER2 (ERBB2/neu), EGFR (HER1/ERBB1)
ABL
EGFR (HER1/ERBB1)
VEGFR, PDGFR, KIT
ABL, FGFR1-3, FLT3, VEGFR2
19 Regorafenib (Stivarga)
KIT, PDGFRβ, RAF, RET, VEGFR1/2/3
20 Ruxolitinib (Jakafi)
21 Sorafenib (Nexavar)
JAK1/2
VEGFR, PDGFR, KIT, RAF
22 Sunitinib (Sutent)
VEGFR, PDGFR, KIT, RET
23 Temsirolimus (Torisel)
24 Tofacitinib (Xeljanz)
25 Trastuzumab (Herceptin)
mTOR
JAK3
HER2 (ERBB2/neu)
26 Vandetanib (Caprelsa)
27 Vemurafenib (Zelboraf)
EGFR (HER1/ERBB1), RET, VEGFR2
BRAF
FDA-approved indication(s)
Breast cancer (HER2+)
Renal cell carcinoma
Colorectal cancer
Glioblastoma
Non-small cell lung cancer
Renal cell carcinoma
Chronic myelogenous leukemia (Philadelphia chromosome positive)
Medullary thyroid cancer
Colorectal cancer (KRAS wild type)
Squamous cell cancer of the head and neck
Non-small cell lung cancer (with ALK fusion)
Chronic myelogenous leukemia (Philadelphia chromosome positive)
Acute lymphoblastic leukemia (Philadelphia chromosome positive)
Non-small cell lung cancer
Pancreatic cancer
Pancreatic neuroendocrine tumor
Renal cell carcinoma
Nonresectable subependymal giant cell astrocytoma associated with tuberous sclerosis
Non-small cell lung cancer with known prior benefit from gefitinib (limited approval)
GI stromal tumor (KIT+)
Dermatofibrosarcoma protuberans
Multiple hematologic malignancies including Philadelphia chromosome-positive ALL and CML
Melanoma
Breast cancer (HER2+)
Chronic myelogenous leukemia (Philadelphia chromosome positive) ​
Colorectal cancer (KRAS wild type)
Renal cell carcinoma
Chronic myelogenous leukemia
Acute lymphoblastic leukemia (Philadelphia chromosome positive)
Colorectal cancer
Gastrointestinal stromal tumors
​ Myelofibrosis
Hepatocellular carcinoma
Renal cell carcinoma
GI stromal tumor
Pancreatic neuroendocrine tumor
Renal cell carcinoma
Renal cell carcinoma
Rheumatoid arthritis
Breast cancer (HER2+)
Gastric cancer (HER2+)
Medullary thyroid cancer
Melanoma (with BRAF V600 mutation)
FDA approved
clinical samples
AvL
Patient samples
Pathology &
Molecular
Diagnostics
Serum
Amplicon
Panel
48 genes
RNA/DNA
FF / FFPE
178 cancer
genes
capture
ctDNA
AKL
low
coverage
CNV-Seq
Sample preparation
Sequencing on HiSeq or MiSeq
Genomics
Core
Facility
Primary Analysis
Pipelines
Sequence data
Variant calls
Tumor
sequencing
board
CNV-Seq
Copy number variation sequencing
250-500 ng of Fresh or FFPE DNA
1 HiSeq lane, 10 samples, coverage ~0.2x
Costs per sample: 150 Euro
BRCA1,2 classifier
Full genome
3300 Mb
7x
Exonic sequences
34 Mb
700x
ChIP
Kinome
2.6 Mb
7000 x RNA
DNA
gene expression analysis
178 gene NKI
cancer panel
libraries
10.000 x
<1 Mb
BAIT SIZE
coverage
Gene Capture
Variant
calling
exome,
kinome,
1 sample in 1 lane PE 2x50 HiSeq
TCR
Single bp Mutations
Amplifications
Deletions
Inversions
Insertions
Multiplexing
16 samples/lane
on MiSeq
Agilent XT2 system
RNA Expression levels
Multiplex XT2 capture with178 genes NKI Capture Cancer panel
Normal FFPE
Tumor FFPE
Tumor FF
Normal (FFPE)
Tumor (FFPE + FF)
18/49
Lungscape series (biopsies)
M. van den Heuvel
FF libraries cluster more efficient than FFPE libraries
Raw read counts (x10^6)
50
FFPE RNA libararies
FF RNA libararies
40
30
20
10
0
FFPE
DNA
captures
FF
Lungscape series (biopsies)
M. van den Heuvel
Changing views of Non Small Cell Lung Cancer
Traditional view
Current view
Conclusions:
-NGS is a revolutionary technology producing a wealthy amount of data.
-NGS is used in the NKI in a routine setting with many types of applications.
-NGS is investigated for clinical application using FF and FFPE samples
- 1) The Amplicon panel (mutation hotspots)
- 2) a 178 gene Capture Cancer Panel
- 3) ctDNA analysis
-Standard clinical application will still require optimalization, validation
and testing
-Expectation is that we will routinely apply NGS clinically in June 2014.
Acknowledgements
Genomics Core
Facility
Marja Nieuwland
Wim Brugman
Arno Velds
Iris de Rink
Shan Baban
Erwin Bekema
Janneke Kruizinga
Roel Kluin
Bernd van der Veen
Daan Vessies
Mariëlle Kreté
Stefan Lehnert
Ron Kerkhoven
NGS project group Clinical
implementation
Steering group
Sandra Timmermans, Sanne Heinzbergen, Michel
vd Heuvel, Michiel vd Heijden, Jelle Cool, Ron
Kerkhoven, Henri van Luenen, Petra Nederlof,
Maartje Vogel
Also involved:
René Bernards, Annegien Broeks,
Lizet vd Kolk, Jeroen de Jong, Esther Lips, Els
Verhoeven, Efraim Rosenberg, Arno Velds, Marja
Nieuwland, Wim Brugman, Iris de Rink, Frans
Hogervorst, Valesca Retel, Paula Hoekstra, Daan
Vessies, Mariëlle Kreté.
NKI research
Departments
Dept Pathology
Dept Radiology
Family Cancer Clinic
Clinic
Core Facility Molecular
Pathology & Biobanking
Molecular Diagnostics
Alg. Klinisch Lab
Mol. Carcinogenesis
NKI collegues:
Roderick Beijerbergen, Wilbert Zwart, Waseem Akthar, Lorenza Mittemperher,
Carsten Linnemann.