DIE WEDLOOP NA HOER PROTEIEN IN SOJABONE Saamgestel deur/Compiled by: Jan Dreyer THE RACE TO SECURE HIGHER PROTEIN CONTENT IN SOYBEANS Inhoudsopgawe 01 Inleiding 01 Kultivar en plantfaktore 01 Stikstofvoorsiening 02 Stikstofbinding 02 Omgewingsfaktore wat proteïenvlakke beïnvloed 02 Verbouingspraktyke wat proteïenvlakke beïnvloed 03 Opsommend 03 Bronne Index 04 Introduction 04 Cultivar and plant factors 04 Nitrogen supply 04 Nitrogen fixation 05 Environmental factors that affect protein levels 05 Growing practices that affect protein levels 06 Summary 06 Sources 01 Die wedloop na hoer prote en in sojabone INLEIDING edurende die afgelope vyf jaar het die produksie van sojabone in Suid-Afrika in só ‘n mate toegeneem dat hierdie skitter-gewas nou sy regmatige plek as een van die groottes in die akkerbouwêreld kan inneem. G Tesame met hierdie verhoogde belangstelling, het die klem ook sterker op verskeie kwaliteitseienskappe begin val waaraan sojabone moet voldoen om veral in die veevoermark sy prima status te behou. Proteïeninhoud van die graan en uiteindelik die proteïeninhoud van sojaboonkoek is vir die veevoerbedryf van groot belang. Die vraag is dus hoe die proteïeninhoud van graan deur verskillende faktore beïnvloed word. KULTIVAR EN PLANTFAKTORE Daar word jaarliks landswyd ‘n uitgebreide kultivarevaluasieprogram deur die Landbounavorsingsraad uitgevoer. Die inligting in hierdie uitgebreide verslag toon duidelik hoe kultivars in proteïeninhoud verskil, maar ook hoe dieselfde kultivars tussen gebiede kan verskil. Hou ook in gedagte dat daar ‘n verband tussen olie- en proteïeninhoud van sojaboongraan bestaan. As die olie hoog is, daal die persentasie proteïen, en andersom. Die gemiddelde olie-inhoud van nagenoeg 20% en proteïen van 40% is dus nie ‘n konstante nie. Wat interessant is, is die feit dat die proteïeninhoud in ‘n enkele plant kan verskil. Dit is egter nie van praktiese belang nie. So ook het kultivareienskappe, soos byvoorbeeld bepaalde en onbepaalde groeiwyses, ‘n beperkte invloed op proteïenkonsentrasies in sojaboongraan. STIKSTOFVOORSIENING Sojabone het die vermoë om minerale stikstof (N) uit die grond te onttrek of N te verkry deur ‘n simbiotiese N-binding met behulp van ‘n aangepaste entstof (Bradyrhizobium japonicum-bakterieë). Uiteraard is ‘n kombinasie van dié twee stelsels moontlik. Verskeie buitelandse datastelle is ontleed om ‘n prentjie te kry van die relatiewe bydrae van N-binding en minerale-opname. Indien slegs bogrondse groei in ag geneem word, is die bewyse sterk dat N-binding in die meeste gevalle nie alleen in die vraag na N kan voorsien nie. As die ondergrondse dele (wortels) egter bygevoeg word, dan balanseer die N-som tot ‘n mate. Wat egter belangrik is, is die feit dat hoe hoër die graanopbrengs raak, hoe meer neig die N-binding om ‘n kleiner persentasie van die N-behoefte van die plant te voorsien. Te veel N in die bogrond het egter ‘n negatiewe invloed op die N-binding. Belangrik is egter die feit dat die Nbinding vanaf die vroeë reproduktiewe fase (blomstadium) tot selfs ná die saadontwikkelingsfase (R6) ‘n groot invloed op die proteïenpersentasie van sojaboonsaad het. Gedurende hierdie periode behoort alles moontlik gedoen te word om optimale groei te verseker. Onkruidkompetisie behoort dus beperk te word; so ook alle negatiewe aspekte wat die plant se groei kan benadeel, soos byvoorbeeld blaarsiektes. In ‘n studie met verskillende N-draende bemesting, is gevind dat ammoniumnitraat, ureum en ureum plus swael (S) almal die N-binding verminder het. Hierdie vermindering is duidelik bevestig deur verminderde nodulegewig, die aantal nodules en hul massa. Swaelbyvoegings het nie, soos verwag, deurgaans ‘n opbrengsverhoging tot gevolg gehad nie. Aanvullende N word redelik algemeen gebruik. Dit bly egter riskant waar groot hoeveelhede toegedien word. Die literatuur dui verskillende limiete aan, maar dit wil voorkom of ongeveer 20 kg N die boonste grens mag wees. Minerale N in die grond word makliker deur die plant opgeneem en vereis minder energie as stikstofbinding deur bakterieë. Waar N dus wel toegedien word, bly dit ‘n balanstoertjie om die beste van twee wêrelde te verseker. 02 Die wedloop na hoer prote en in sojabone (vervolg) STIKSTOFBINDING Ekonomiesgesproke is sojabone se vermoë om N te bind een van die groot pluspunte van die gewas. Voeg hierby die feit dat effektiewe N-binding die beste versekeringspolis vir ‘n goeie opbrengs is asook die hoogste proteïenkonsentrasie in die graan verseker. Effektiewe N-binding is slegs moontlik as daar nie ‘n oormaat N (veral nitrate) in die bogrond teenwoordig is nie. Die grond se pH behoort neutraal te wees, terwyl Molobdeen (Mo) in baie gevalle ‘n vereiste is. Met al hierdie vereistes in plek, is enting met die regte stam (ras) (WB 74) van Rhizobium ‘n vereiste. Nie alleen moet die konsentrasie van die bakterieë hoog genoeg wees nie, maar dit moet verkieslik op die saad of naby genoeg aan die saad in klam grond geplaas word. Direkte sonlig, hoë temperature en droë grond sal die bakterieë laat vrek; tesame daarmee sal die moontlikheid vir ‘n goeie opbrengs en hoë proteïeninhoud ook verdwyn. Die stoor van die entstof voorplant en die hantering op die land is dikwels deurslaggewend vir goeie resultate. Temperature in store en voertuie is dikwels so hoog dat baie bakterieë vrek selfs nog voordat dit in die grond beland. Simbiotiese N-binding vind plaas waar wortelhare teenwoordig is en waar sojabone ‘n chemiese sein uitstuur wat deur die bakterieë erken en beantwoord word. Die proses is baie sterk aan goeie vogvoorsiening gekoppel. ‘n Neutrale pH is ideaal, omdat dit die toeganklikheid van die meeste noodsaaklike mikro-elemente bevoordeel wat N-binding aanhelp. OMGEWINGSFAKTORE WAT PROTEÏENVLAKKE BEÏNVLOED Daar is baie uitsonderings op die reël, maar oor die algemeen is proteïenvlakke hoër hoe warmer die omgewing. In die noorde van China is proteïenvlakke laer as in die suide, wat nader aan die ewenaar lê. Dieselfde geld vir die VSA. Een verklaring vir hierdie probleem mag laer grondtemperature wees wat die Nbinding beperk. Relatief hoë temperature en droë toestande tydens die graanvulperiode sal proteïenvlakke verhoog ten koste van olie, maar ook die saadopbrengs laat daal. Verskeie kritiese temperatuurstudies is wêreldwyd gedoen. Waar proteïenvlakke van sojabone by 29°C met dié by 35°C vergelyk is, het proteïenvlakke met 4% gestyg en olievlakke met 2,6% gedaal by die hoër temperatuur. Dit was geldig oor verskillende vogpeile. Dit wil voorkom of die temperatuurgrens iewers tussen 25°C en 28°C is. Bokant 28°C styg proteïenvlakke en daal die olie-inhoud. Daar is ook sprake dat verkorte daglengtes proteïenkonsentrasies verhoog, omdat die tempo van N-translokasie daardeur verhoog word. Temperature het ook ‘n beduidende invloed op proteïensamestelling. VERBOUINGSPRAKTYKE WAT PROTEÏENVLAKKE BEÏNVLOED Alle verbouingsaspekte wat verseker dat optimale sojaboongroei plaasvind, sal opbrengs, en in die meeste gevalle ook proteïenvlakke, verhoog. Die optimalisering van bemesting is waarskynlik die beste metode wat ‘n produsent kan volg om die maksimum opbrengs te kry, maar ook om in die meeste gevalle die hoogste proteïeninhoud in sojabone te bewerkstellig. ‘n Algemene riglyn om in gedagte te hou, is die volgende: Elke ton sojaboonsaad benodig tussen 60 kg en 70 kg Stikstof (N), tussen 6 kg en 9 kg Fosfaat (P), 20 - 40 kg Kalium (K), 4 kg Kalsium en 6 kg Swael (S). Voeg hierby die uiters belangrike mikro-elemente wat vir optimale groei en proteïensintese noodsaaklik is. Dit is veral Mo wat aandag vereis. Plaaslike werk wat deur Mark Farina en medewerkers in KwaZulu-Natal gedoen is, dui op die verhoging in proteïeninhoud van saad met die toediening van veral P en Mo. Volgens hierdie studie is P vir 57% van die variasie wat in totale proteïenproduksie voorgekom het, verantwoordelik. 03 Die wedloop na hoer prote en in sojabone (vervolg) Molobdeen is uiters noodsaaklik vir N-binding, hoewel dit in klein hoeveelhede benodig word. Blaarbespuiting kan werk, hoewel saadbehandeling ook gedoen word met moontlikke risiko vir swakker stikstofbinding. Optimale bemesting is met planttyd noodsaaklik, aangesien nagenoeg 80% van die totale voedingstowwe tussen 50 en 100 dae na-opkoms opgeneem word. Die nodules begin ook eers ná ongeveer ‘n maand funksioneer – indien vog voldoende is en die temperatuur nie te laag daal nie. Kalium is veral belangrik in die vervoer van voedingstowwe, die waterverbruik van die plant en fotosintese. Hierdie element verhoog proteïeninhoud, waarskynlik omdat dit knoppiesvorming bevoordeel. Slegs 20% van die kalsium wat deur die plant opgeneem word, word deur die saad verwyder; tog speel hierdie element ‘n belangrike rol in N-binding. Dit het waarskynlik iets te doen met die selmembrane wat om die knoppies vorm ná wortelinfeksie. Swael se rol is belangrik in die sintese van aminosure en dus ook proteïen in die saad. Slegs die helfte van die opgeneemde S vind hul weg na die saad. Sink kan beperkend wees, wat die ensiemsisteem van die plant kan benadeel en gevolglik minder proteïen tot gevolg sal hê. Enting met die voorgeskrewe bakterieë is noodsaaklik, so ook die behandeling van die saad en entstof voorof tydens plant. Die konsentrasie van bakterieë en die plasing daarvan om goeie simbiose te verseker, is van kritieke belang. Neem kennis dat N-binding steeds die mees effektiewe en goedkoopste manier is om N in die plant te kry. Temperatuurmanipulasie ten einde proteïenvlakke te verhoog, is moontlik deur later te plant, maar dit sal in die meeste gevalle onprakties wees, veral omdat opbrengste meestal daal soos wat planttye aangeskuif word. OPSOMMEND Maak seker dat alle verbouingsaspekte waaroor daar beheer is, optimaal toegepas word. Hierdeur verseker die produsent ook dat die proteïenvlakke so hoog as moontlik sal wees. BRONNE • Boerma, H.R. and Specht, J.E., Co-Editors, 2004. Soybeans: Improvement, Production and Uses, Third Edition • Gous, R.M. and Griessel, M., 2012 – Literature Review • Farina, M.P.W., Thibaud, G.R. and Channon, P., 1997 – Factors Affecting the Response of Soybeans to Molybdenum application: Final Report • Singh, G., 2010 – The Soybean Botany Production and Uses Pamflet geborg deur die Proteïennavorsingstigting. 04 The race to secure higher protein content in soybeans INTRODUCTION uring the past five years the production of soybeans in South Africa has increased to such an extent that this celebrated crop can now take its rightful place as one of the most important crops in our country. D With this increased production, more emphasis now needs to be placed on improving some essential quality characteristics in soybeans if its prime status in the animal feed market is to be retained. Protein content of the grain and protein content of the oilcake is of considerable importance for the animal feed industry. The question is thus how the protein content of grain are affected by different agronomic factors. CULTIVAR AND PLANT FACTORS Every year the Agricultural Research Council conducts an extensive cultivar evaluation programme. The information contained in the council’s comprehensive report shows clearly how cultivars differ in terms of protein content, but also how the content of the same cultivar differs when grown in different areas. The average protein content of soybeans is about 40% and the oil content about 20%, but these amounts are not constant, seeing as there is a link between the oil and protein content of soybean grain: When the oil content is high, the amount of protein is reduced and vice versa. It is interesting to note that the protein content of the grain sometimes differs within a single plant, although this is not of practical concern. Cultivar characteristics, such as determinate and indeterminate growth habits, also have a limited effect on protein concentrations in soybean grain. Various international data sets have been analysed to obtain a picture of the relative contributions of mineral uptake and N fixation. There is strong evidence to suggest that N fixation alone cannot provide fully for the N demand required for plant growth above the ground. If the parts that grow below ground (roots) are included, the N total balances to a certain degree. What is important though is that the proportion of N supplied through fixation declines as grain yield increases. However, too much N in the upper soil level has a negative effect on N fixation. N fixation plays an important role in determining the amount of protein deposited in the soybean from the early reproductive (flowering) phase through to the seed development phase (R6). During that period, everything possible should be done to ensure optimal growth. Weed competition should be limited, as should diseases that affect the leaves and all other aspects that could negatively affect plant growth. A study, in which various N containing fertilisers were compared, showed that ammonium nitrate, urea and urea plus sulphur (S) all reduced N fixation, resulting in reduced nodule weight, number of nodules and nodule mass. In contrast with expectations, sulphur additives did not always lead to yield increases. N supplementation is used fairly generally, but this practice is risky if large quantities are used. Various limits are given in the literature, but it seems as if approximately 20 kg N/ha may represent the upper limit. Mineral N is taken up from the soil more easily than what it “costs” to manufacture N through fixation. It thus remains a balancing act when adding mineral N, to ensure the best of both worlds. NITROGEN FIXATION NITROGEN SUPPLY Soybeans have the ability to both take up mineral nitrogen (N) from the soil and to fix N by means of a symbiotic relationship with an adapted inoculum (Bradyrhizobium japonicum bacterium). In an economic sense the ability of soybeans to fix N remains one of the biggest advantages of the crop. Additionally, effective N fixation is the best assurance for a good yield and the highest protein concentrate in the grain. 05 The race to secure higher protein content in soybeans (continued) Effective N fixation is possible only if there is not an excess of N (particularly nitrates) in the upper soil layer. The soil pH should be neutral, and in many cases Molybdenum (Mo) is required. Once all these aspects are in place, inoculation with the correct Rhizobium genus (WB 74) needs to take place. Not only should the bacterial concentration be sufficient, but it should also be placed on the seed or in close proximity to the seed in moist soil to ensure effective inoculation. Direct sunlight, high temperatures and dry soil will kill the bacteria, which will reduce the potential for a good yield and high protein content. The conditions during storage of the inoculum before planting and handling during planting are critical if good results are to be achieved. Temperatures during storage and in vehicles during transportation are often so high that bacteria die even before being placed in the soil. Symbiotic N fixation takes place if root hairs are present and when soybeans send a chemical signal recognised and responded to by bacteria. The process is strongly linked to adequate soil moisture conditions. A neutral pH is ideal, because it increases the accessibility to most of the essential micro-elements and assists with N fixation. ENVIRONMENTAL FACTORS THAT AFFECT PROTEIN LEVELS There are many exceptions to the rule, but generally protein levels are higher in warmer environments. In the north of China, protein levels are lower than in southern China, which is closer to the equator. The same principle applies in the USA. One possible reason for this may be that lower soil temperatures limit N fixation. Various critical temperature studies have been conducted globally, which have shown that relatively high temperatures and dry conditions during the grain filling period increase protein levels at the expense of oil, but seed yield is also reduced under these conditions. In one study, protein levels of soybeans grown at 29°C were 4% higher and oil levels 2,6% lower than those grown at 35°C. These results were similar over a range of moisture levels. It seems as if the upper temperature limit is between 25°C and 28°C. At temperatures above 28°C, protein levels increase and oil levels decrease. It also seems that shorter day lengths may increase protein concentration by increasing the rate of N translocation. Temperatures also have a significant effect on the composition of protein. GROWING PRACTICES THAT AFFECT PROTEIN LEVELS All agronomic aspects that ensure optimal soybean growth will increase yield and, in most cases, also protein levels. Optimising fertilisation is probably the best method available to producers to ensure maximum yield and in most cases this also ensures the highest protein content in soybeans. Remember, a general guideline is that each ton of soybean seed requires between 60 kg and 70 kg nitrogen (N), 6 kg and 9 kg phosphate (P), 20 to 40 kg potassium (K), 4 kg calcium and 6 kg sulphur (S). In addition, many micro-elements are essential for optimal growth and protein synthesis. Mo requires particular attention. Local work conducted by Mark Farina and co-workers in KwaZulu-Natal demonstrated that the protein content of seed increased after the addition of P and Mo. According to that study, P is responsible for 57% of the variation in total protein production. Molybdenum is vital for N fixation, although it is required in small quantities. Spraying leaves could work, although seed treatment is also possible although it may adversely affect nitrogen fixation. Optimal fertilisation during planting is essential, seeing as about 80% of total nutrients are taken up between 50 and 100 days after sprouting. The nodules also start functioning about a month later, but only if moisture is sufficient and temperatures do not drop too low. 06 The race to secure higher protein content in soybeans (continued) Potassium is particularly important for the transport of nutrients, water consumption and photosynthesis in the plants. These elements increase protein content probably because they promote the formation of nodules. Only 20% of the calcium taken up by the plant is removed by the seed and yet this plays an important role in N fixation. It is probably involved with the cell membranes that form around the nodules after root infection. Sulphur plays an important role in the synthesis of amino acids and therefore also in seed protein. Only half of the sulphur taken up finds its way to the seed. Zinc can be inhibitive and can be a disadvantage to the enzyme system of the plant, leading to reduced protein. Inoculation with the required bacteria is vital, but so is the treatment of seed and inoculum before and during planting. The bacterial concentration used and the placement of bacteria to ensure good symbiosis are of critical importance. Remember that N fixation remains the most effective and cost efficient means of introducing N to the plant. SUMMARY Ensure that all agronomic aspects that may be controlled are applied optimally. For producers, this will ensure that protein levels will be as high as possible. SOURCES • Boerma, H.R. and Specht, J.E., Co-Editors, 2004 Soybeans: Improvement, Production and Uses, Third Edition • Gous, R.M. and Griessel, M., 2012 – Literature Review • Farina, M.P.W., Thibaud, G.R. and Channon, P., 1997 – Factors Affecting the Response of Soybeans to Molybdenum application: Final Report • Singh, G., 2010 – The Soybean Botany Production and Uses Pamphlet sponsored by the Protein Research Foundation. Temperature manipulation to increase protein levels is possible by delaying planting, but is impractical in most cases, particularly because yields are mostly reduced if planting is delayed. www.infoworks.biz
© Copyright 2024 ExpyDoc