Knicken – Lösen – Prüfen 12 Ableitungen Ableitungen verschachtelter Funktionen: Kettenregel Bestimme erst innere (i(x)) und äußere Funktion (a(i)) und bilde dann die Ableitung. Knicke zuerst den Zettel an der Linie um, ohne Dir die Lösungen anzuschauen. Löse alle Aufgaben und vergleiche erst dann Deine Ergebnisse. a0 (i) = cos i i0 (x) = 2 a) f (x) = sin (2x) a(i) = sin i i(x) = 2x f 0 (x) = 2 cos (2x) b) f (x) = cos(x2 + 2x) a(i) = cos i a0 (i) = − sin i i(x) = x2 + 2x i0 (x) = 2x + 2 0 f (x) = − (2x + 2) · sin(x2 + 2x) c) f (x) = √ x2 + 1 d) f (x) = (2x + 10) e) f (x) = √ a(i) = i i(x) = x2 + 1 f 0 (x) = √xx2 +1 a(i) = i3 i(x) = 2x + 10 2 f 0 (x) = 6 (2x + 10) 3 1 x2 +5 f) f (x) = sin2 x g) f (x) = 2 10 h) f (x) = (2x − 3x) i) f (x) = √ a0 (i) = − x12 i0 (x) = 2x a(i) = i2 i(x) = sin x f 0 (x) = 2 sin x · cos x a0 (i) = 2i i0 (x) = cos x 2 j) f (x) = (5 − x) − 25 Ole Vanhoefer / www.lernbuffet.de 2016 a0 (i) = − i12 1 i0 (x) = 2√ x a(i) = i10 a0 (i) = 10i9 2 0 i(x) = 2x − 3x i (x) = 4x − 3 0 2 f (x) = 10(4x − 3)(2x − 3x)9 √ a(i) = i i(x) = sin x cos x f 0 (x) = 2√ sin x sin x a0 (i) = 3i2 i0 (x) = 2 a(i) = 1i i(x) = x2 + 5 f 0 (x) = − (x22x +5)2 a(i) = 1i √ i(x) = x f 0 (x) = − 2x1√x √1 x 1 a0 (i) = 2√ i i0 (x) = 2x 1 a0 (i) = 2√ i i0 (x) = cos x a(i) = i2 − 25 a0 (i) = 2i 0 i(x) = 5 − x i (x) = −1 0 f (x) = −2(5 − x) = 2x − 10 Blatt 12
© Copyright 2025 ExpyDoc