第62回トポロジーシンポジウム講演集 2015年8月 於 名古屋工業大学 Stein )∗ ( Stein (compact Stein surface) Stein CN Stein Stein 4 Stein Stein Stein Eliashberg [El1] Gompf [Go] Stein Kirby Stein Loi Piergallini [LP] Akbulut Ozbagci [AO] Lefschetz Stein Lefschetz Lefschetz Lefschetz Stein 1 Stein Lefschetz Stein 2 1 Lefschetz Stein Stein 1.1. Stein M 3 ture) M α ∧ dα > 0 (M, ξ), (M " , ξ " ) ∗ 1 M ξ (contact strucα ξ = Kerα M α ξ (contact form) . contactmorphic ( 15J05214) 152-8550 2-12-1 e-mail: [email protected] 89 第62回トポロジーシンポジウム講演集 2015年8月 於 名古屋工業大学 H : M → M" H∗ (ξ) = ξ " (isotopic) 3 M (M, ξ) ξ, ξ " 4 Stein ξ Stein (Stein fillable) M Stein (X, J) (M, ξ) (∂X, T ∂X ∩ J(T ∂X)) (X, J) (M, ξ) Stein (Stein filling) Stein Stein 1 Eliashberg [El2] Stein 4 B4 L(p, 1) (p $= 4) S3 3 McDuff [Mc] Stein Euler L(p, 1) (p $= 4) Plamenevskaya −p Stein Van Horn-Morris [PV] Stein 1.2. Lefschetz Lefschetz [FM] Lefschetz Σ := Σg,b Σ Diff+ (Σ, ∂Σ) group) MΣ α Σ Σ tα ϕ1 ϕ2 ∈ M Σ [GS, Chapter 8] [OS, Chapter 10] g b Diff+ (Σ, ∂Σ) Σ Diff+ (Σ, ∂Σ) Dehn [tα ] = [tα! ] ∈ MΣ MΣ ϕ1 1: (mapping class Σ (right-handed Dehn twist) tα α 1 1 α α" tα [tα ] ϕ1 , ϕ2 ∈ MΣ ϕ2 α Dehn X 1.1. X schetz fibration) . 4 D2 D 2 f : X → D2 90 Lefschetz (LefQf = {a1 , a2 , . . . , am } 第62回トポロジーシンポジウム講演集 2015年8月 於 名古屋工業大学 1. f |f −1 (D2 − Qf ) 2. a i ∈ Qf 3. D 2 − Qf Σ f −1 (ai ) f pi ai w = f (z1 , z2 ) = z12 + z22 1.2. f : X → D2 (isomorphic) h◦f =f ◦H f : X → D2 (s1 , s2 , . . . , sn ) a0 system) (z1 , z2 ) w f " : X " → D2 Lefschetz a0 ai a0 i = 1, 2, . . . , n γi (γ1 , γ2 , . . . , γn ) ( pi Lefschetz H : X → X" a0 ∂D2 i $= j si ai f X D2 f f" h : D2 → D2 . si ∩ sj = {a0 } s1 , s2 , . . . , sn Vi Vi s i {γ1 , γ2 , . . . , γn } π1 (D2 − Qf , a0 ) Hurwitz (Hurwitz generating 2) Lefschetz γi 2: Hurwitz . Σ αi (Σ × [0, 1])/((x, 1) ∼ (φ(x), 0)) → [0, 1]/(1 ∼ 0) [φ] ∈ MΣ αi ⊂ Σ t αi −1 f (ai ) (vanishing cycle) (tα1 , tα2 , . . . , tαn ) f (γ1 , γ2 , . . . , γn ) (monodromy) Hurwitz (tα1 , . . . , tαi , tαi+1 , . . . , tαn ) ↔ (tα1 , . . . , tαi+1 , t−1 αi+1 tαi tαi+1 , . . . , tαn ) (tα1 , tα2 , . . . , tαn ) ↔ (t(α1 )ϕ , t(α2 )ϕ , . . . , t(αn )ϕ ) ϕ MΣ (tα1 , tα2 , . . . , tαn ) (tβ1 , tβ2 , . . . , tβn ) 2 Hurwitz (Hurwitz equivalent) (tα1 , tα2 , . . . , tαn ) ≡ (tβ1 , tβ2 , . . . , tβn ) Lefschetz Hurwitz 91 2 第62回トポロジーシンポジウム講演集 2015年8月 於 名古屋工業大学 f : X → D2 allowable αi ALF allowable Lefschetz 1.3. Lefschetz ALF f [αi ] ∈ H1 (Σ; Z) Stein 1.4 (Loi-Piergallini [LP, Theorem 3], Akbulut-Ozbagci [AO, Theorem 5]). X 4 1. X Stein 2. X ALF X ALF 1.3. [Et] [OS, Chapter 9] B M 1.5. (B, π) M π : M − B → S1 Σθ ⊂ M B (B, π) (page) M M −B π S1 (open book decomposition) θ ∈ S1 IntΣθ = π −1 (θ) ∂Σθ = B (binding) Σ ≈ Σθ (B, π) π : (M − B) → S 1 (B, π) ϕ ∈ MΣ (monodromy) Σ ϕ ∈ MΣ ∂Σ r ∂Σ1 , ∂Σ2 , . . . , ∂Σr Σϕ := (Σ × [0, 1])/((x, 1) ∼ (ϕ(x), 0)) 3 1 r r S × D2 ∂Σϕ F θ1 θ2 ∂D2 [0, 1] S 1 × {θ1 } ⊂ S 1 × ∂D2 ! ∂Σi ×{θ2 } ⊂ ∂Σϕ F Σϕ ∪F ( r S 1 ×D2 ) 3 Σ (Σ, ϕ) . ξ M M ξ (supporting open book decomposition) ξ ξ α dα v α(v) > 0 Thurston Winkelnkemper [TW] M Giroux 1.6 (Giroux [Gi]). M • {M • {M ξ }/ 3 2 (Σ, ϕ) }/ 92 第62回トポロジーシンポジウム講演集 2015年8月 於 名古屋工業大学 (Σ, ϕ) (positive stabilization) (Σ , tα ϕ) Σ " h a h " α a∪a " a Giroux M 1Σ ∪ h Σ" Σ Stein 1.7 ( 1. ξ 2. ξ 1.4 ). M 3 ξ M Stein (Σ, ϕ) ϕ Dehn Dehn f : X → D2 pr : (D2 − ALF Σ (tα1 , tα2 , . . . , tαn ) ALF 2 {0}) → S (r, θ) /→ θ (r, θ) D − {0} −1 1 −1 1 (pr ◦ f )|(pr ◦ f ) (S ) : (pr ◦ f ) (S ) → S 1 ∂X (Σ, tα1 tα2 · · · tαn ) (M, ξ) (Σ, ϕ) ϕ 1.7 (2) tα1 tα2 · · · tαn = ϕ ϕ Σ (tα1 , tα2 , . . . , tαn ) ALF (M, ξ) Stein ALF (Σ, ϕ) ALF 1 1.4. Stein manifold) S 1.8 (Oba [Ob2]). M ξ (M, ξ) Stein Stein Mazur 1.9. 2. 1. 1.8 Mazur 4 3 3 (Σ0,4 , ϕ) ξ (Mazur type 0- 1- 2M M 4 Stein S3 B4 S3 ([Ob1]) 1.8 3 S 3 Kirby Stein Stein 1.4 1.7 0 93 Stein 第62回トポロジーシンポジウム講演集 2015年8月 於 名古屋工業大学 1.10 (Wendl[We, Theorem 1]). M ξ (M, ξ) 3 0 Stein ξ X (Σ, ϕ) Stein (Σ, ϕ) ALF Stein (Σ, ϕ) ϕ Dehn Stein 1.8 Stein 1.11 ([Ob2]). M ξ (M, ξ) Stein 3 X " 0 (i $= 0). 1.10 . [Ob2] (M, ξ) Stein (Σ, ϕ) 1.8 Mazur 1.10 ALF f : X → D2 (tα1 , tα2 , . . . , tαn ) Σ0,4 2 Σ0,4 ×D X χ(X) = 1 Stein fillable Z (i = 0) [Ob2] X M 0 Hi (X; Z) ∼ = 1.8 ξ X ξ ALF f X 2χ(X) = χ(Σ0,4 × D2 ) + n = −2 + n 1.11 n = 3. [α1 ], [α2 ], [α3 ] ∈ H1 (Σ0,4 ; Z) 3 (i) (ii) Hurwitz χ(X) [α1 ], [α2 ], [α3 ] ∈ H1 (Σ0,4 ; Z) 3: Kirby X ϕ B4 tβ1 tβ2 tβ3 [α1 ] = [β1 ], [α2 ] = [β2 ], α3 = β3 2 94 . (iii) (tα1 , tα2 , tα3 ) ≡ (tβ1 , tβ2 , tβ3 ) ALF Hurwitz 0tα1 , tα2 1 ⊂ MΣ0,4 [α1 ] = [β1 ], [α2 ] = [β2 ] 第62回トポロジーシンポジウム講演集 2015年8月 於 名古屋工業大学 ψ1 , ψ2 ∈ 0tα1 , tα2 1 (αi )ψi = βi (i = 1, 2) (tβ1 , tβ2 , tβ3 ) ≡ (t(α1 )ψ1 , t(α2 )ψ2 , tα3 ) ≡ (tα1 , t(α2 )ψ2 ψ1−1 , tα3 ) PSL(2; Z) ψ2 ψ1−1 = tpα2 tqα1 p, q ∈ Z p q (tα1 , t(α2 )ψ2 ψ1−1 , tα3 ) ≡ (tα1 , t(α2 )tα2 tα1 , tα3 ) ≡ (tα1 , tα2 , tα3 ) 2 0tα1 , tα2 1 → Stein 2.1. Loi Piergallini Stein 2.1 (Loi-Piergallini [LP, Theorem 3]). X 1. X 2. X Stein B4 4 ( 4 2.3) Stein S S Stein 2 S 2.2. 4 B4 [Ru], [Ka, Chapter 16 17], [APZ, Section 3] [APZ, Section 5, 6] D12 , D22 S D12 × D22 2.2. S ⊂ D12 × D22 surface) m m pr1 : D12 × D22 → D12 ((simple) braided pS := pr1 |S : S → D12 pS |QS | = n a0 ∂D12 π1 (D12 − QS , a0 ) Hurwitz (γ1 , γ2 , . . . , γn ) 2 Sm m ρ : π1 (D1 − QS , a0 ) → Sm pS 2 ρ π1 (D1 − QS , a0 ) ρ(γi ) ρp S m S (braid 2 monodromy)ρS : π1 (D1 −QS , a0 ) → Bm (ρS (γ1 ), ρS (γ2 ), . . . , ρS (γn )) S pS ρS (γi ) = wi−1 σjεii wi σji , wi ∈ Bm , εi ∈ {±1} σ ji B m QS 1.2 2.3. ρS i S (positive) −1 ρS (γi ) = wi σji wi 95 S 第62回トポロジーシンポジウム講演集 2015年8月 於 名古屋工業大学 p : X → B 4 ≈ D12 × D22 pr1 ◦ p : X → D2 ALF −1 2 p ({a0 }×D2 ) (a0 ∈ ∂D12 ) S ∩ ({a0 } × D22 ) S S f := Q f = QS f f (a0 ) = −1 2 −1 2 4) p|p ({a0 }×D2 ) : p ({a0 }×D2 ) → {a0 }×D22 f [LP, Proposition 1] −1 ( X, D12 × D22 4: f , pS B4 q : Σ → D2 d Bm m [hβ ] ∈ MDm m β ∈ Bm Qq Dm D − Qq Dm 2 (liftable) MDm Dm Hβ : Σ → Σ β ∈ Bm 2.4 ([Ob3]). S ⊂ D12 × D22 (w1−1 σj1 w1 , w2−1 σj2 w2 , . . . , wn−1 σjn wn ) a0 ∂D12 {a0 } × D22 ⊂ D12 × D22 S ∩ ({a0 } × D22 ) d −1 w i σj i w i ∈ B m q S 4 2 p:X→B pr1 ◦ p : X → D1 1.2 q q ◦ H β = hβ ◦ q q : Σ → B 4 ≈ D12 × D22 Σ ALF . b0 ∈ {a0 } × ∂D22 π1 (({a0 } × D22 ) − (S ∩ ({a0 } × D22 )), (a0 , b0 )) Hurwitz (x1 , x2 , . . . , xm ) ρ : π1 (D4 − S, (a0 , b0 )) → Sd q ρq π1 (D4 − S, (a0 , b0 )) ι∗ (x1 ), ι∗ (x2 ), . . . , ι∗ (xm ) S ([Fo, p. 133], [Ya], [Ru, Proposition 4.1]) 2 2 ι : (({a0 } × D2 ) − (S ∩ ({a0 } × D2 )), (a0 , b0 )) 0→ (D4 − S, (a0 , b0 )) q ρ [Ob3] 96 第62回トポロジーシンポジウム講演集 2015年8月 於 名古屋工業大学 2.3. Stein 2.5. N S Stein S ⊂ D12 ×D22 pi : Xi → B 4 ≈ D12 × D22 (i = 1, 2, . . . , N ) 2 1. X1 , X2 , . . . , XN 2. Xi pi Stein Ji Ji $= Jj (i $= j) . N =2 a0 ∈ ∂D12 b0 ∈ {a0 } × ∂D22 B8 β1 , β2 , . . . , β5 β1 := σ5 β2 := (σ6−1 σ7−2 σ6−1 σ4 σ32 σ4 )−1 σ5 (σ6−1 σ7−2 σ6−1 σ4 σ32 σ4 ), β3 := (σ6−1 σ5−1 σ4−1 σ3−1 σ2−1 σ1−2 σ2−1 σ7 σ6 σ5−1 σ4−1 σ3−1 σ4−2 σ3−1 σ4 )−1 σ7 · (σ6−1 σ5−1 σ4−1 σ3−1 σ2−1 σ1−2 σ2−1 σ7 σ6 σ5−1 σ4−1 σ3−1 σ4−2 σ3−1 σ4 ), β4 := (σ4−1 σ5−2 σ4−1 σ2 σ12 σ2 )−1 σ3 (σ4−1 σ5−2 σ4−1 σ2 σ12 σ2 ), β5 := (σ6 σ52 σ6 )−1 σ7 (σ6 σ52 σ6 ), β6 := (σ3 σ4 σ5 σ6 )−1 σ2 (σ3 σ4 σ5 σ6 ) 8 S (β1 , β2 , β3 , β4 , β5 , β6 ) q1 , q2 : Σ1,4 → {a0 } × D22 ρq1 , ρq2 : π1 ({a0 } × D22 , (a0 , b0 )) → S4 4 ρq1 (x1 ) = (1 2), ρq1 (x2 ) = (1 2), ρq1 (x3 ) = (2 3), ρq1 (x4 ) = (2 3) ρq1 (x5 ) = (3 4), ρq1 (x6 ) = (3 4), ρq1 (x7 ) = (1 2), ρq1 (x8 ) = (1 2) ρq2 (x1 ) = (1 2), ρq2 (x2 ) = (1 2), ρq2 (x3 ) = (3 4), ρq2 (x4 ) = (3 4) ρq2 (x5 ) = (2 3), ρq2 (x6 ) = (2 3), ρq2 (x7 ) = (1 2), ρq2 (x8 ) = (1 2) β1 , β2 , . . . , β5 q1 , q2 2.4 qi pi : Xi → B 4 ≈ D12 × D22 pr1 ◦ pi : Xi → D12 ALF Kirby Kirby X1 X2 Euler −4 pi Stein Ji 1 Chern Kirby c1 (X1 , J1 ) $= 0 c1 (X2 , J2 ) = 0 (M, ξ) x∈L ξstd 2.6. N L 2 2.6 L (transverse link) T x L + ξx = Tx M S3 L ⊂ (S 3 , ξstd ) pi : Mi → S 3 (i = 1, 2, . . . , N ) 1. M1 , M2 , . . . , MN 2. Mi ξi 62 97 i $= j ξi ξj 第62回トポロジーシンポジウム講演集 2015年8月 於 名古屋工業大学 [AO] S. Akbulut and B. Ozbagci, Lefschetz fibrations on compact Stein surfaces, Geom. Topol. 5 (2001), 939–945. [APZ] N. Apostolakis, R. Piergallini, and D. Zuddas, Lefschetz fibrations over the disc, Proc. Lond. Math. Soc. (3) 107 (2013), no. 2, 340–390. [El1] Y. Eliashberg, Topological characterization of Stein manifolds of dimension > 2, Internat. J. Math. 1 (1990), no. 1, 29–46. [El2] Y. Eliashberg, Filling by holomorphic discs and its applications, Geometry of Lowdimensional Manifolds: 2, Proc. Durham Symp. 1989, London Math. Soc. Lecture Notes 151, Cambridge Univ. Press, 1990, 45–67. [Et] J. Etnyre, Lectures on open book decompositions and contact structures, Floer Homology, Gauge Theory, and Low Dimensional Topology, Clay Math. Proc. 5, Amer. Math. Soc., Providence, RI, 2006. [FM] B. Farb and D. Margalit, A primer on mapping class groups, Princeton Mathematical Series 49, Princeton Univ. Press, Princeton, NJ, 2012. [Fo] R. H. Fox, A quick trip through knot theory, Topology of 3-manifolds and related topics (Prentice-Hall, Englewood Cliffs, N.J., 1962), pp. 120–167. [Gi] E. Giroux, Géométrie de contact: de la dimension trois vers les dimensions supérieures, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 405–414. [Go] R. Gompf, Handlebody construction of Stein surfaces, Ann. of Math. (2) 148 (1998), no. 2, 619–693. [GS] R. Gompf and A. Stipsicz, 4-Manifolds and Kirby Calculus, Grad. Stud. Math. 20, Amer. Math. Soc., Providence, RI, 1999. [Ka] S. Kamada, Braid and knot theory in dimension four, Mathematical Surveys and Monographs, 95. American Mathematical Society, Providence, RI, 2002. [LP] A. Loi and R. Piergallini, Compact Stein surfaces with boundary as branched covers of B 4 , Invent. Math. 143 (2001), no. 2, 325–348. [Mc] D. McDuff, Symplectic manifolds with contact type boundaries, Invent. Math. 103 (1991), 651–671. [Ob1] T. Oba, A note on Mazur type Stein fillings of planar contact manifolds, arXiv:1405.3751. [Ob2] T. Oba, Stein fillings of homology spheres and mapping class groups, arXiv:1407.5257. [Ob3] T. Oba, Compact Stein surfaces as branched coverings with distinct covering monodromies, in preparation. [OS] B. Ozbagci and A. Stipsicz, Surgery on contact 3-manifolds and Stein surfaces, Bolyai Soc. Math. Stud. 13, Springer-Verlag, 2004. [PV] O. Plamenevskaya and J. Van Horn-Morris, Planar open books, monodromy factorizations and symplectic fillings, Geom. Topol. 14 (2010), 2077–2101. [Ru] L. Rudolph, Braided surfaces and Seifert ribbons for closed braids, Comment. Math. Helv. 58 (1983), no. 1, 1–37. [TW] W. Thurston and H. Winkelnkemper, On the existence of contact forms, Proc. Amer. Math. Soc. 52 (1975), 345–347. [We] C. Wendl, Strongly fillable contact manifolds and J-holomorphic foliations, Duke Math. J. 151(3) (2010), 337–384. [Ya] T. Yajima, Wirtinger presentations of knot groups, Proc. Japan Acad. 46(1970), 997– 1000. 98
© Copyright 2024 ExpyDoc