Diagnostische Toets Wis B VWO Hoofdstuk 9 Exponentiele en logaritmische functies Getal en Ruimte wiskunde uitwerkingen www.uitwerkingensite.nl 9.5 Diagnostische toets bladzijde 42 1 a 3log(5) + 2 ⋅ 3log(2) = 3log(5) + 3log(22) = 3log(5 ⋅ 22) = 3log(20) b 3 - 2log(5) = 2log(23) - 2log(5) = 2log(8) - 2log(5) = 2 log( 85 ) c 2 1 log(8000) + 3 ⋅ 2 log( 15 ) = 2log(8000) + 2 log(( 15)3 ) = 2 log(8000) - 2 log( 125 ) = 2 log( 8000 ) = 2log(64) = 6 125 2 a 2 ⋅ 2log(x - 1) = 1 + 2log(18) 2 log((x - 1)2) = 2log(2) + 2log(18) 2 log(x2 - 2x + 1) = 2log(36) x2 - 2x + 1 = 36 x2 - 2x - 35 = 0 (x - 7)(x + 5) = 0 x = 7 ∨ x = -5 voldoet voldoet niet b 2log(x) = 3 - 2log(x + 2) 2 log(x) = 2log(23) - 2log(x + 2) 8 log(x) = 2 log x + 2 2 x= 8 x+2 x2 + 2x = 8 x2 + 2x - 8 = 0 (x + 4)(x - 2) = 0 x = - 4 ∨ x = 2 voldoet niet voldoet 3 1 a 2log(x) - 2 log(x - 1) = 3 2 log(x) + 2log(x - 1) = 3 2 log(x2 - x) = 3 x2 - x = 8 x2 - x - 8 = 0 D = 1 - 4 ⋅ 1 ⋅ -8 = 33 1+ 33 1 − 33 ∨ x= 2 2 voldoet niet voldoet b log2(x) - 5 ⋅ log(x) = 6 Stel log(x) = p. p2 - 5p = 6 p2 - 5p - 6 = 0 (p - 6)(p + 1) = 0 p = 6 ∨ p = -1 log(x) = 6 ∨ log(x) = -1 x = 106 ∨ x = 10-1 1 x = 1 000 000 ∨ x = 10 x= voldoet 4 34Hoofdstuk9 voldoet a 3 + 6 ⋅( ) = 5 1 3x + 6 ⋅ x = 5 3 Stel 3x = p. 1 p+6⋅ =5 p p2 + 6 = 5p p2 - 5p + 6 = 0 (p - 2)(p - 3) = 0 p = 2 ∨ p = 3 3x = 2 ∨ 3x = 3 x = 3log(2) ∨ x = 1 voldoet voldoet x 1 x 3 b 9x = 3x + 12 (3x)2 = 3x + 12 Stel 3x = p. p2 = p + 12 p2 - p - 12 = 0 (p - 4)(p + 3) = 0 p = 4 ∨ p = -3 3x = 4 ∨ 3x = -3 x = 3log(4) geen opl. c 9x = 3x + 1 + 4 (3x)2 = 3x ⋅ 3 + 4 Stel 3x = p. p2 = 3p + 4 p2 - 3p - 4 = 0 (p - 4)(p + 1) = 0 p = 4 ∨ p = -1 3x = 4 ∨ 3x = -1 x = 3log(4) geen opl. d 3x + 2 + 32x + 1 = 12 3x ⋅ 32 + 32x ⋅ 3 = 12 9 ⋅ 3x + 3 ⋅ 32x = 12 Stel 3x = p. 9p + 3p2 = 12 p2 + 3p - 4 = 0 (p + 4)(p - 1) = 0 p = -4 ∨ p = 1 3x = - 4 ∨ 3x = 1 geen opl. x = 0 5 a y = 3x verm. t.o.v. de x-as met 13 ↓y = 1 3 ⋅ 3x Er geldt y = 13 ⋅ 3x = 3-1 ⋅ 3x = 3x - 1. Dusdetranslatie(1,0)levertdezelfdebeeldfiguurop. b y = 3log(x) ↓ translatie (0, -2) y = 3log(x) - 2 x Er geldt y = 3log(x) - 2 = 3log(x) - 3log(32) = 3 log = 3log( 91 x). 9 Dus de vermenigvuldiging ten opzichte van de y-asmet9levertdezelfdebeeldfiguurop. 6 a f (p) - g(p) = 2 3p - 1 - 4 - (2 - 3p) = 2 3p - 1 - 4 - 2 + 3p = 2 3p ⋅ 3-1 + 3p = 8 1 ⋅ 3p + 3p = 8 3 4 3 ⋅ 3p = 8 3p = 6 p = 3log(6) b f (p) = g(p + 1) = q 3p - 1 - 4 = 2 - 3p + 1 3p ⋅ 3-1 - 4 = 2 - 3p ⋅ 3 1 3 ⋅ 3p - 4 = 2 - 3 ⋅ 3p ∨ ∨ ∨ ∨ ∨ g(p) - f (p) = 2 2 - 3p - (3p - 1 - 4) = 2 2 - 3p - 3p - 1 + 4 = 2 -3p - 3p ⋅ 3-1 = - 4 3p + 13 ⋅ 3p = 4 ∨ 43 ⋅ 3p = 4 ∨ ∨ ∨ ∨ ∨ 3p = 3 p=1 g(p) = f (p + 1) = q 2 - 3p = 3p + 1 - 1 - 4 2 - 3p = 3p - 4 ∨ -2 ⋅ 3p = - 6 3 13 ⋅ 3p = 6 ∨ 3p = 3 3p = 1 54 ∨ p=1 p = 3 log( 95 ) ∨ p=1 9 5 9 log( 5 ) - 1 3 p = log( ) geeft q = f (p) = 3 3 3 -4= 3 9 log( 5 ) ⋅ 3-1 - 4 = 95 ⋅ 13 - 4 = 53 - 4 = -3 52 p = 1 geeft q = g(p) = 2 - 31 = 2 - 3 = -1 Exponentiëleenlogaritmischefuncties35 7 y a g A B C y=q ƒ x O x = –3 Stel xB = p dus xC = 3p. f (3p) = g(p) = q geeft 2log(3p + 3) = 2log(4p) 3p + 3 = 4p -p = -3 p=3 q = g(p) = g(3) = 2log(4 ⋅ 3) = 2log(12) y b g ƒ F E D O x = –3 x x=p E is het midden van DF, dus f (p) = 2 ⋅ g(p). 2 log(p + 3) = 2 ⋅ 2log(4p) 2 log(p + 3) = 2log((4p)2) p + 3 = (4p)2 p + 3 = 16p2 16p2 - p - 3 = 0 D = 1 - 4 ⋅ 16 ⋅ -3 = 193 1+ 193 1 − 193 ≈ 0,47 ∨ p = 32 32 voldoet niet voldoet p= 8 a 2e3 - e3 e3 = 2 =e e2 e b (e3x - 5)2 = (e3x)2 - 2 ⋅ 5 ⋅ e3x + 52 = e6x - 10 e3x + 25 9 36Hoofdstuk9 a 3x ex - ex = 0 (3x - 1)ex = 0 3x - 1 = 0 ∨ ex = 0 3x = 1 geen opl. x = 13 b e2x - 1 - 3 e 2 = 0 e2x - 1 = 3 e 2 2 e2x - 1 = e 3 2x - 1 = 23 2x = 1 23 x = 65 c e4x - ex + 1 = 0 e4x = e x + 1 4x = x + 1 3x = 1 x = 13 d e2x + 2 ex = 3 (ex)2 + 2 ex = 3 Stel ex = p. p2 + 2p = 3 p2 + 2p - 3 = 0 (p + 3)(p - 1) = 0 p = -3 ∨ p = 1 ex = -3 ∨ ex = 1 geen opl. x = 0 bladzijde 43 10 a f (x) = 2 ex - 3x2 geeft f ′(x) = 2 ex - 6x b f (x) = x 2 + 1 e x ⋅ 2x - (x 2 + 1) ⋅ e x (2x - x 2 - 1)e x - x 2 + 2x - 1 geeft f ′(x) = = = ex (e x )2 e2 x ex c f (x) = (x2 + 1)ex geeft f ′(x) = 2x ⋅ ex + (x2 + 1) ⋅ ex = (x2 + 2x + 1)ex d f (x) = e x (x 2 + 1) ⋅ e x - e x ⋅ 2x (x 2 - 2x + 1)e x geeft f ′(x) = = x + 1 (x 2 + 1)2 (x 2 + 1)2 2 e f (x) = x2 ⋅ e2x - 1 geeft f ′(x) = 2x ⋅ e2x - 1 + x2 ⋅ 2 ⋅ e2x - 1 = (2x2 + 2x)e2x - 1 f f (x) = e x 11 a f (x) = 2 +9 = eu met u = x2 + 9 geeft f ′(x) = eu ⋅ 2x = e x 2 +9 ⋅ 2x = 2x e x 2 +9 e x x ⋅ e x - e x ⋅1 (x - 1)e x geeft f ′(x) = = x x2 x2 f ′(x) = 0 geeft (x - 1)e x =0 x2 x (x - 1)e = 0 x - 1 = 0 ∨ ex = 0 x=1 geen opl. y ƒ O x 1 min. is f (1) = e b Stel l: y = ax + b met a = f ′(2) = l: y = 14 e 2 x + b e 2 f (2) = = 12 e 2 , dus A(2, 12 e 2 ) 2 Dus l: y = 14 e 2 x. } (2 - 1) ⋅ e 2 1 2 = 4e . 22 e = 14 e 2 ⋅ 2 + b 0=b 1 2 2 Exponentiëleenlogaritmischefuncties37 1 1 12 a ln(e3 ⋅ e ) = ln(e3 ⋅ e 2 ) = ln(e 2 ) = 3 1 2 3 1 b ln 2 = ln(e-2) = -2 e 13 a 4 + ln(3) = ln(e4) + ln(3) = ln(3e4) b ln(10) - 4ln(2) = ln(10) - ln(24) = ln(10) - ln(16) = ln( 10 ) = ln( 85 ) 16 14 a 2 ln(5x) = 16 ln(5x) = 8 5x = e8 x = 15 e8 b ln2(5x) = 16 ln(5x) = 4 ∨ ln(5x) = - 4 5x = e4 ∨ 5x = e- 4 1 x = 15 e 4 ∨ x = 15 e - 4 = 4 5e c 2 ln2(x) - ln(x) = 0 Stel ln(x) = p. 2p2 - p = 0 p(2p - 1) = 0 p = 0 ∨ 2p - 1 = 0 p = 0 ∨ p = 12 ln(x) = 0 ∨ ln(x) = 12 1 x = e0 = 1 ∨ x = e 2 = e d ln(9x + 1) - ln(x + 2) = ln(4) ln(9x + 1) = ln(x + 2) + ln(4) ln(9x + 1) = ln(4(x + 2)) ln(9x + 1) = ln(4x + 8) 9x + 1 = 4x + 8 5x = 7 x = 75 = 1 52 voldoet 15 a f (x) = 23x - 4 = 2u met u = 3x - 4 geeft f ′(x) = 2u ⋅ ln(2) ⋅ 3 = 23x - 4 ⋅ ln(2) ⋅ 3 = 3 ⋅ 23x - 1 ⋅ ln(2) b f (x) = x ⋅ 3x geeft f ′(x) = 1 ⋅ 3x + x ⋅ 3x ⋅ ln(3) = (1 + x ln(3)) ⋅ 3x 1 1 4 1 c f (x) = ln(x ⋅ 3 x ) = ln(x 3 ) = 1 13 ln( x ) geeft f ′(x) = 1 13 ⋅ = x 3x 1 2 2 2 d f (x) = log(4x) = log(4) + log(x) geeft f ′(x) = x ln( 2) 1 5 3 3 e f (x) = log(5x - 6) = log(u) met u = 5x - 6 geeft f ′(x) = ⋅5= u ln(3) (5x - 6)ln(3) 1 6x f f (x) = ln(3x2 + 3) = ln(u) met u = 3x2 + 3 geeft f ′(x) = ⋅ 6x = 2 u 3x + 3 16 a f (x) = 3x - 1 + 3-x + 1 geeft f ′(x) = 3x - 1 ⋅ ln(3) + -1 ⋅ 3-x + 1 ⋅ ln(3) = 3x - 1 ⋅ ln(3) - 3-x + 1 ⋅ ln(3) f ′(x) = 0 geeft 3x - 1 ⋅ ln(3) - 3-x + 1 ⋅ ln(3) = 0 3x - 1 ⋅ ln(3) = 3-x + 1 ⋅ ln(3) 3x - 1 = 3-x + 1 x - 1 = -x + 1 2x = 2 x = 1 y ƒ O 1 x f (1) = 30 + 30 = 1 + 1 = 2 Bf = [2, →〉 38Hoofdstuk9 b f ′(x) = 83 ln(3) geeft 3x - 1 ⋅ ln(3) - 3-x + 1 ⋅ ln(3) = 83 ln(3) 3x - 1 - 3-x + 1 = 83 3x ⋅ 3-1 - 3-x ⋅ 31 = 83 ⋅ 3x - 3 ⋅ 3-x = 83 3 1 ⋅ 3x - x = 83 3 3 Stel 3x = p. 3 8 1 ⋅p- = 3 3 p 1 3 1 3 p 2 - 3 = 83 p p2 - 8p - 9 = 0 (p - 9)(p + 1) = 0 p = 9 ∨ p = -1 3x = 9 ∨ 3x = -1 x = 2 geen opl. f (2) = 32 - 1 + 3-2 + 1 = 3 + 3-1 = 3 13 Het raakpunt is ( 2, 3 13 ). ln( x ) =0 x ln(x) = 0 x = 1 Het snijpunt met de x-as is (1, 0). 1 x ⋅ - ln( x ) ⋅1 1 - ln( x ) ln( x ) = f (x) = geeft f ′(x) = x 2 x x x2 1 - ln(1) Stel k: y = ax + b met a = f ′(1) = = 1. 12 17 a f (x) = 0 geeft k: y = x + b door (1, 0) } 0=1+b -1 = b Dus k: y = x - 1. 1 - ln( x ) b f ′(x) = 0 geeft =0 x2 1 - ln(x) = 0 ln(x) = 1 x=e y ƒ O e x ln(e ) 1 = e e 1 Bf = , → e f (e) = Exponentiëleenlogaritmischefuncties39
© Copyright 2025 ExpyDoc