ESERCIZI C ONTENTS 1. 2. 3. (1) (2) (3) (4) (5) Determinare il dominio delle seguenti funzioni Calcolare i seguenti limiti Determinare i valori del parametro affinché le funzioni siano continue 1. D ETERMINARE IL DOMINIO DELLE SEGUENTI FUNZIONI x+1 . f (x) = log x − 1 1 f (x) = log . x(x − 1) log(x + 2) f (x) = . 3 − x2 log(x + 3) . f (x) = 5 − x2 log(log x) . 2. C ALCOLARE I SEGUENTI LIMITI (1) (2) (3) (4) (5) (6) sin((x − 1)2 ) lim . x→1 x−1 2x cos(e + 1) lim . x→+∞ x3 x−2 x lim . x−2 x→2+ sin(x2 − 1) lim . x→1 x−1 cos((2x + 1)e3x ) lim . x→+∞ x3/2 sin x lim+ x . x→0 lim (1 − cos(1/x))(1 + sin(ex )). 1 x sin(2x) (8) lim 1 − . x→0 2 √ 2 (sin x) (9) lim . 2x x→0+ 1 (10) lim+ (cos x) log x . (7) x→+∞ x→0 (11) (12) lim (x − 1) log(x2 − 1). x→1+ lim sin(1/x)(1 + cos(ex )). x→+∞ 1 (13) lim (1 − 2x) sin(x/2) . x→0 sin(2x − π) . 3x sin(log(2x)) (15) lim . x→+∞ log(x3 ) (16) lim+ (tan x)tan x . (14) lim x→0 x→0 1 1 1 2 2 ESERCIZI sin(−2x) . 3x arctan(x3 ) (18) lim . x→+∞ x3 sin x (19) lim (2x) . (17) lim x→0 x→0+ log x √ . x sin(log x) (21) lim . x→+∞ x h x i log1 x . (22) lim sin 3 x→0+ (20) lim x→0+ 3. D ETERMINARE I VALORI DEL PARAMETRO AFFINCHÉ LE FUNZIONI SIANO CONTINUE ( c + log(x + e), x > 0, (1) f (x) = 2 e−x , x < 0. ( e−x log( c ), x < 0, (2) f (x) = 2 e−x , x > 0. ( 2x −x e −e , x > 0, x (3) f (x) = −|x| + c, x < 0. ( arcsin(1 − x2 ), |x| < 1, (4) f (x) = log(2x2 − c), |x| > 1. ( 2 x log x, x > 0, (5) f (x) = 2 (x − c) + x + 9, x < 0. ( 1 x < −1, e x+1 , (6) f (x) = log(x + 1 + c), x > −1.
© Copyright 2024 ExpyDoc