Diagnostische Toets Wis C VWO Hoofdstuk 13 Algebraïsche vaardigheden Getal en Ruimte wiskunde uitwerkingen www.uitwerkingensite.nl SCROLL DOWN || || V 13.8 Diagnostische toets bladzijde 50 1 K = aq + b met a = K = 1,75q + b q = 200 en K = 575 ∆K 1030 − 575 = = 1,75 ∆q 460 − 200 ⋅ 200 + b = 575 } 1,75 350 + b = 575 Dus K = 1,75q + 225. 2 b = 225 a Los op 2,12t + 253 = 1,86t + 274 0,26t = 21 t ≈ 80,8 K KII KI t O Uit de schets volgt dat bij 81 uur of meer zonnebank II goedkoper is dan zonnebank I. en KII − KI = 10. b Los op KI − KII = 10 2,12t + 253 − (1,86t + 274) = 10 1,86t + 274 − (2,12t + 253) = 10 2,12t + 253 − 1,86 − 274 = 10 1,86t + 274 − 2,12t − 253 = 10 0,26t − 21 = 10 − 0,26t + 21 = 10 0,26t = 31 − 0,26t = −11 t ≈ 119,2 t ≈ 42,3 Verschil is minder dan 10 euro bij gebruik tussen 42 en 119 uur per jaar. 3 a a + 2b = 36 2b = −a + 36 b = − 0,5a + 18 P = 20 − 0,3a + 0,8b b P = 7ab − 2a b = 3a − 4 0,3a + 0,8(−0,5a + 18) } PP == 2020 −− 0,3a − 0,4a + 14,4 P = 34,4 − 0,7a − 4) − 2a } PP == 7a(3a 21a − 28a − 2a 2 P = 21a2 − 30a 4 a 1 x 2 x 1 = 1 2 = 1 1 22 =x 1 −2 2 x ⋅x x 12 3,8 b (x ) ⋅ x = x ⋅ x = x15,8 c (x2a − 1)4 ⋅ x3 = x8a − 4 ⋅ x3 = x8a − 1 2,4 5 2 3,8 1 3 1 3 1 5 a y = 2x3 ⋅ x = 2x 3 ⋅ x 2 = 2x 2 , dus y = 2x 2 . 1 11 11 22 −2 −2 −2 −3 b y = 33 ⋅⋅ xx == 2x ⋅⋅ xx22 == 2x 2 x−3 2 x 22,,dus y = 2x 2 xx c y = (3x−1,2)3 ⋅ 2x4,6 = 27x−3,6 ⋅ 2x4,6 = 54x, dus y = 54x. 6 a y = 5 ⋅ x3,2 geeft 5 ⋅ x3,2 = y x3,2 = 15 y 1 x = ( 15 y ) 3,2 1 1 x = ( 15 ) 3,2 ⋅ y 3,2 x = 0,60 ⋅ y0,31 b y = 5 ⋅ 3 x 2 geeft 5 ⋅ 3 x 2 = y 2 x 3 = 15 y 1 5 x = ( y) 3 2 c y = 5 ⋅ (3x)2,1 1 ( 2 ) 3 3 x = ( 15 ) ⋅ y 2 x = 0,09 ⋅ y1,5 geeft 5 ⋅ (3x)2,1 = y (3x)2,1 = 15 y 1 3x = ( 15 y ) 2 ,1 1 1 x = 13 ⋅ ( 51 ) 2 ,1 ⋅ y 2 ,1 x = 0,15 ⋅ y0,48 7 a N = 15 ⋅ 2,63t − 1 N = 15 ⋅ 2,63t ⋅ 2,6−1 N = 15 ⋅ 2,6−1 ⋅ (2,63)t N = 5,77 ⋅ 17,58t b N = 600 ⋅ 0,84t − 3 N = 600 ⋅ 0,84t ⋅ 0,8−3 N = 600 ⋅ 0,8−3 ⋅ (0,84)t N = 1172 ⋅ 0,41t c N = 500 ⋅ 0,20,05t − 2 N = 500 ⋅ 0,20,05t ⋅ 0,2−2 N = 500 ⋅ 0,2−2 ⋅ (0,20,05)t N = 12 500 ⋅ 0,92t bladzijde 51 8 a gdag = 1,36, dus gweek = 1,367 ≈ 8,61. De toename per week is 761%. 1 b gdag = 1,36, dus guur = 1, 36 24 ≈ 1,013. De toename per uur is 1,3%. 9 1 a g10 jaar = 0,75, dus gjaar = 0, 7510 ≈ 0,972. De afname per jaar is 2,8%. b g10 jaar = 0,75, dus g25 jaar = 0,752,5 ≈ 0,487. De afname per 25 jaar is 51,3%. 10 a N1 = at + b met a = ∆N 3900 − 3000 = = 300. ∆t 8−5 N1 = 300t + b t = 5 en N1 = 3000 } 300 ⋅ 5 + b = 3000 N2 = b ⋅ 1,0914t t = 5 en N2 = 3000 } b ⋅ 1,0914 = 3000 b = 1500 Dus N1 = 300t + 1500. 3900 b N2 = b ⋅ gt met g3 tijdseenheden = = 1,3 3000 1 3 gtijdseenheid = 1, 3 ≈ 1,0914 5 b= 3000 ≈ 1940 1, 09145 Dus N2 = 1940 ⋅ 1,0914t. c N1 = 9000 geeft 300t + 1500 = 9000 300t = 7500 t = 25 Op t = 25 is N2 = 1940 ⋅ 1,091425 ≈ 17 270. 11 a 3 + 2 ⋅ log(x) = 7 2 ⋅ log(x) = 4 log(x) = 2 x = 102 = 100 b log(2x − 300) = 4 2x − 300 = 104 2x = 10 300 x = 5150 c 5 + 3 ⋅ log(x) = 2 3 ⋅ log(x) = −3 log(x) = −1 x = 10−1 = 0,1 12 a f (6) = 2 + log(9) ≈ 2,95 b f (x) = 5 geeft 2 + log(x + 3) = 5 log(x + 3) = 3 x + 3 = 103 x = 997 c Voer in y1 = 2 + log(x + 3) en y2 = − 0,5x + 1. De optie intersect geeft x = −2. y ƒ g x O –2 x = –3 f (x) < g(x) geeft −3 < x < −2. 1 1 2 13 a 5 ⋅ 3log(4) − ⋅ 3log(16) = 3log(45) − 3 log(16 2 ) = 3log(1024) − 3 log( 16) = 1024 3 log(1024) − 3log(4) = 3 log = log(256) 4 3 b log(x + 145) = 1 + log(x + 10) log(x + 145) = log(10) + log(x + 10) log(x + 145) = log(10(x + 10)) log(x + 145) = log(10x + 100) x + 145 = 10x + 100 −9x = − 45 x=5 c 5 ⋅ log(N) = 10 − 4P log(N) = 2 − N = 10 2− 4 5 P 4 P 5 N = 102 ⋅ 10 4 −5P − 4 N = 102 ⋅ (10 5 ) P Je krijgt N = 100 ⋅ 0,158P. d F = 560 ⋅ 1,175t log(F) = log(560 ⋅ 1,175t) log(F) = log(560) + log(1,175t) log(F) = log(560) + t ⋅ log(1,175) Je krijgt log(F) = 0,07t + 2,75. 14 a Buurgemeente A Rechte lijn op logaritmisch papier, dus NA = b ⋅ gt. 70000 t = 0 en N = 20 000 1 g50 jaar = = 32 t = 50 en N = 70 000 20000 } 1 gjaar = (3 12 ) 50 ≈ 1,025 De formule is NA = 20 000 ⋅ 1,025t. Buurgemeente B Rechte lijn op logaritmisch papier, dus NB = b ⋅ gt. 20000 t = 0 en N = 200 000 g50 jaar = = 0,1 t = 50 en N = 20 000 200000 } 1 gjaar = 0,150 ≈ 0,955 De formule is NB = 200 000 ⋅ 0,955t. b Voer in y1 = 20 000 ⋅ 1,025x + 200 000 ⋅ 0,955x. De optie minimum geeft x ≈ 41,4 en y ≈ 85 318. In 1991 is het aantal minimaal. Er zijn dan 85 318 inwoners.
© Copyright 2025 ExpyDoc