Uitgewerkte oefeningen Hoofdstuk 2 October 1, 2014 Oefening 9 d) Z Via Horner bekomen we -1 1 dx x3 + x2 + x + 1 1 .. . 1 1 1 1 -1 0 0 1 -1 ||0 ⇒ (x3 + x2 + x + 1) = (x + 1)(x2 + 1) Splitsen in partieelbreuken: A 1 Bx + C = + 2 x3 + x2 + x + 1 x+1 x +1 ⇔ 1 = A(x2 + 1) + (Bx + C)(x + 1) ⇔ 1 = Ax2 + A + Bx2 + Cx + Bx + C ⇔ 1 = (A + B)x2 + (B + C)x + (A + C) ⇒ (A + B) = 0; (B + C) = 0 en A + C = 1 1 −1 ⇒ A = C = en B = 2 2 Z Z Z 1 dx 1 1−x 1 dx = + dx x3 + x2 + x + 1 2 x+1 2 x2 + 1 Z Z Z 1 dx 1 dx 1 x = + − dx 2 2 2 x+1 2 x +1 2 x +1 (Stel u = x2 + 1 ⇒ du = 2xdx) Z 1 1 du = ln|x + 1| + Bgtan(x) − 2 4 u 1 1 = ln|x + 1| + Bgtan(x) − ln|u| + C 2 4 1 1 = ln|x + 1| + Bgtan(x) − ln|x2 + 1| + C 2 4 1 Oefening 11 r) Z √ x √ dx x+1+ 3x+1 Stel t6 = x + 1 ⇒ dx = 6t5 dt. Z Z 6 x t −1 5 √ √ dx = 6t dt t3 + t2 x+1+ 3x+1 Z 6 (t − 1)t3 =6 dt t+1 Via Euclidische deling bekomen we: Z = 6 t3 (t5 − t4 + t3 − t2 + t − 1)dt Z = 6 (t8 − t7 + t6 − t5 + t4 − t3 )dt 6 3 2 9 3 8 6 7 t − t + t − t6 + t5 − t4 + C 3 4 7 5 2 p p √ 2 3 6 = (x + 1) x + 1 − (x + 1) 3 (x + 1) + (x + 1) 6 (x + 1) − (x + 1) 3 4 7 p 6p 3 + 6 (x + 1)5 − 3 (x + 1)2 + C 5 2 = Oefening 12 h) Z p (4 − x2 ) 4 − x2 dx 2 Stel x = 2 sin θ ⇒ dx = 2 cos θdθ en bijgevolg 4−x2 = 4−4 sin2 θ = 4 cos2 θ Z Z p (4 − x2 ) 4 − x2 dx = 4 cos2 (θ)2 cos(θ)2 cos(θ)dθ 2 1 + cos(2θ) dθ 2 Z 16 = 1 + 2 cos(2θ) + cos2 (2θ) dθ 4 Z Z Z 1 + cos(4θ) dθ = 4 dθ + 8 cos 2θdθ + 4 2 1 = 4θ + 4 sin(2θ) + 2θ + sin(4θ) + C 2 = 6θ + 4 sin(2θ) + sin(2θ) cos(2θ) + C Z = 16 cos4 (θ)dθ = 16 Z = 6θ + sin(2θ)(4 + cos(2θ)) + C = 6θ + 2 sin(θ) cos(θ)(4 + 1 − 2 sin2 (θ)) + C = 6θ + 10 sin(θ) cos(θ) − 4 sin3 (θ) cos(θ) + C r r x2 x2 x x3 x 1− 1− −4 +C = 6Bgsin + 10 2 2 4 8 4 5 x3 p x x− 4 − x2 + C = 6Bgsin + 2 2 4 3
© Copyright 2024 ExpyDoc