MA1102R Calculus AY 2010/2011 Sem 1 NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY PAST YEAR PAPER SOLUTIONS with credits to Theo Fanuela Prabowo MA1102R Calculus AY 2010/2011 Sem 1 Question 1 ε (a) Given ε > 0. Take δ = min{1, 19 }. Then if 0 < |x + 2| < δ, we have |x3 + 8| = |x + 2| x2 − 2x + 4 ≤ |x + 2| |x|2 + 2|x| + 4 (by triangle inequality) (∵ |x + 2| < δ ≤ 1) ε (∵ |x + 2| < δ ≤ ) 19 < 19|x + 2| < ε. Hence, by definition, lim x3 = −8. x→−2 (sin x − a)(cos x − b) = 5. x→0 ex − 1 (b) Since f is continuous at x = 0, we have lim f (x) = f (0) ⇔ lim x→0 Note that (sin x − a)(cos x − b) × lim (ex − 1) = 5 × 0 = 0. x→0 x→0 ex − 1 lim (sin x − a)(cos x − b) = lim x→0 Since the function (sin x−a)(cos x−b) is continuous on R, we have (sin 0−a)(cos 0−b) = a(1−b) = 0. Since lim (sin x − a)(cos x − b) = 0 = lim (ex − 1), we may apply L’Hopital’s Rule to obtain x→0 x→0 (sin x − a)(cos x − b) cos x(cos x − b) − sin x(sin x − a) = lim = 1 − b = 5. x x→0 x→0 e −1 ex lim Thus, b = −4. Recall that a(1 − b) = 0. Hence, a = 0. Question 2 (a) lim x 1 ln(x3 +1) x→∞ NUS Math LaTeXify Proj Team ln(x) = lim exp x→∞ ln(x3 + 1) ln(x) = exp lim x→∞ ln(x3 + 1) 1/x = exp lim (by L’Hopital’s Rule) x→∞ 3x2 /(x3 + 1) x3 + 1 = exp lim x→∞ 3x3 ! 1 + x13 1 = exp lim = exp . x→∞ 3 3 Page: 1 of 6 NUS Mathematics Society MA1102R Calculus AY 2010/2011 Sem 1 (b) Since lim x→0+ 2 + e1/x sin x + |x| 1 + e4/x ! = lim x→0+ 2/e4/x + 1/e3/x 1/e4/x + 1 ! + lim x→0+ sin x =0+1=1 x and lim x→0− 2 + e1/x sin x + |x| 1 + e4/x it follows that lim x→0 ! = lim x→0− 2 + e1/x sin x + |x| 1 + e4/x 2 + e1/x 1 + e4/x ! + lim x→0− sin x − x = 2+0 − 1 = 1, 1+0 ! = 1. Question 3 (a) First, we note that f is not defined when x < 0. 88 5/3 11 8/3 x − x . 3 3 440 2/3 88 5/3 88 2/3 x − x = x (5 − x). f 00 (x) = 9 9 9 A necessary condition for inflection point is f 00 (x) = 0, so that x = 0 (omitted since f is not defined when x < 0) or x = 5. Observe that f 00(x) > 0 when x ∈ (0, 5) and f 00 (x) < 0 when x ∈ (5, ∞). Thus, the point (5, f (5)) = 5, 150 · 52/3 is an inflection point. f 0 (x) = Remark: According to a more general definition of exponentiation, i.e. z a := exp (a ln |z| + ia arg(z)), f (x) is actually defined to be a non-real number for negative value of x. Please refer to the definition used by your lecturer. (b) It suffices to show that g 0 (x) = 0 for all x ∈ R. Given any x ∈ R. Note that g(y) − g(x) g(y) − g(x) ≤ |y − x|. y − x ≤ |y − x| ⇒ −|y − x| ≤ y−x Since lim −|y −x| = 0 = lim |y −x|, by the Squeeze Theorem, lim y→x y→x y→x g(y) − g(x) = g 0 (x) = 0. Hence, y−x g is a constant function. (c) Let u = x − t. Then Z 3x Z −2x d d sin (x − t)2 dt = − sin(u2 )du dx 0 dx x Z x d = sin(u2 )du dx −2x Z x Z −2x d d = sin(u2 )du − sin(u2 )du dx 0 dx 0 Z −2x d(−2x) d 2 = sin(x ) − · sin(u2 )du dx d(−2x) 0 = sin(x2 ) + 2 sin (−2x)2 = sin(x2 ) + 2 sin(4x2 ). NUS Math LaTeXify Proj Team Page: 2 of 6 NUS Mathematics Society MA1102R Calculus AY 2010/2011 Sem 1 Question 4 2 Since the volume of the outside cylinder is 16π ft3 , we have 16π = π r + 21 (h + 1), so that h = 161 2 − 1. (r+ 2 ) ! ! 16r2 16 2 2 , r > 0. V (r) = πr 2 − 1 = π 2 − r r + 12 r + 12 Thus, 1 2 2 − 16r2 · 2 r + V 0 (r) = π 4 r + 21 3 2πr r + 12 8 − r + 21 = . 4 r + 12 16 · 2r r + 1 2 ! − 2r Critical points are attained when V 0 (r) = 0 or V 0 (r) is undefined, i.e. when r = − 21 or r = 0, or r = 23 . Since r > 0, the only critical point is r = 32 . Note that V 0 (r) > 0 when r ∈ (0, 23 ) and V 0 (r) < 0 when r ∈ ( 32 , ∞). Thus, V (r) is maximized when r = 23 . Recall that h = 161 2 − 1. (r+ 2 ) Thus, h = 3. Hence, the radius and the height of the inside cylinder are 1.5 ft and 3 ft respectively. Question 5 2 x) (a) Let u = tan(ln x) ⇒ du = sec (ln dx. Thus, x Z p Z p sec2 (ln x) tan(ln x) sec4 (ln x) dx = tan(ln x) 1 + tan2 (ln x) · dx x x Z √ = u(1 + u2 )du Z = u1/2 + u5/2 du 2 2 = u3/2 + u7/2 + C 3 7 2 2 = (tan(ln x))3/2 + (tan(ln x))7/2 + C. 3 7 Z (b) First, we will solve the indefinite integral 3x dx. 1 + 32x Let u = 3x ⇒ du = ln 3 · 3x dx. Thus, Z Z 3x 1 du 1 1 dx = = tan−1 (u) + C = tan−1 (3x ) + C. 2x 2 1+3 ln 3 1+u ln 3 ln 3 Therefore Z ∞ 0 3x dx = lim t→∞ 1 + 32x Z 0 t 3x dx 1 + 32x 1 tan−1 (3t ) − tan−1 (1) t→∞ ln 3 1 π π − = ln 3 2 4 π = . 4 ln 3 = lim NUS Math LaTeXify Proj Team Page: 3 of 6 NUS Mathematics Society MA1102R Calculus AY 2010/2011 Sem 1 Question 6 (a) s ln 2 Z 2πy Area = 1+ 0 dy dx 2 ln 2 Z cosh x dx = 2π p 1 + sinh2 xdx 0 ln 2 Z cosh2 xdx = 2π 0 ln 2 x e Z = 2π 0 + e−x 2 2 dx ln 2 1 2x 1 1 −2x = 2π dx e + + e 4 2 4 0 1 2x 1 1 −2x ln 2 = 2π e + x − e 8 2 8 0 15 = + ln 2 π. 16 Z (b) Note that Z 1 2 2 2 2 (k(4x − 3x )) − (kx ) V1 = π 1 Z 16x2 − 24x3 + 8x4 dx 0 8 5 1 2 16 3 4 = πk x − 6x + x 3 5 0 14 2 = πk 15 dx = πk 0 2 and Z 1 2 x k(4x − 3x ) − kx V2 = 2π 2 0 Z dx = 2πk 0 Since V1 is half of V2 , then 14 2 15 πk 1 1 1 4(x − x )dx = 8πk x3 − x4 3 4 2 3 = 31 πk. Since k > 0, it follows that k = 1 0 2 = πk. 3 5 14 . Question 7 (a) Integrating factor = e R cos xdx = esin x . dy sin x ·e + y cos x · esin x = 2x dx d sin x ⇒ e · y = 2x dx Z Z ⇒ d esin x · y = 2xdx ⇒esin x · y = x2 + C. Substituting x = π and y = 0 to the last equation, we get C = −π 2 . Hence, esin x · y = x2 − π 2 , or equivalently x2 − π 2 y = sin x . e NUS Math LaTeXify Proj Team Page: 4 of 6 NUS Mathematics Society MA1102R Calculus AY 2010/2011 Sem 1 (b) (i) dQ = k(50 − Q)(100 − Q) Zdt Z dQ ⇒ = k dt (Q − 50)(Q − 100) Z Z dQ dQ 1 = kt + C − ⇒ 50 Q − 100 Q − 50 1 ⇒ (ln |100 − Q| − ln |50 − Q|) = kt + C 50 100 − Q = 50kt + 50C ⇒ ln 50 − Q 100 − Q ⇒ = ±e50C · e50kt 50 − Q 100 − Q ⇒ = A · e50kt 50 − Q , A = ±e50C . Plugging in Q = t = 0 to the last equation, we get A = 2. Hence, 100 e50kt − 1 100 − Q 50kt = 2e ⇒Q= . 50 − Q 2e50kt − 1 Remark: Here we omit the trivial solutions Q(t) = 50 and Q(t) = 100 since they do not satisfy the initial condition. (ii) Let f (Q) = k(50 − Q)(100 − Q) = kQ2 − 150kQ + 5000k. We want to find the value of Q that minimizes f (Q). Note that f 0 (Q) = 2kQ − 150k. Critical point: f 0 (Q) = 0 ⇒ Q = 75. Observe that f 0 (Q) < 0 when Q < 75 and f 0 (Q) > 0 when Q > 75. Hence, f (Q) is minimized when Q = 75. Question 8 Lemma: For the function f defined in the question, we have Z 1 Z 1 2 x −x f (x)dx = f 00 (x)dx. 2 0 0 Proof of Lemma: Z 0 1 f (x)]10 Z 1 f (x)dx = [x · x · f 0 (x)dx − 0 Z 1 =− x · f 0 (x)dx 0 Z 1 Z 1 1 0 0 =− x · f (x)dx + f (x)dx 2 0 0 Z 1 1 =− x− f 0 (x)dx 2 0 2 1 Z 1 2 x −x x −x =− f 0 (x) + f 00 (x)dt 2 2 0 0 Z 1 2 x −x = f 00 (x)dx. 2 0 NUS Math LaTeXify Proj Team Page: 5 of 6 NUS Mathematics Society MA1102R Calculus AY 2010/2011 Sem 1 Proof of Question 8: Since f 00 is continuous on [0, 1], by the Extreme Value Theorem, it attains minimum and maximum values. Let m = f 00 (a) and M = f 00 (b) where a, b ∈ [0, 1] be the minimum and maximum values respectively. Then, m ≤ f 00 (x) ≤ M 2 2 2 x −x x −x x −x 00 ≤ f (x) ≤ m ⇒M 2 2 2 Z 1 2 Z 1 2 Z 1 2 x −x x −x x −x ⇒M f 00 (x)dx ≤ m dx ≤ dx 2 2 2 0 0 0 Z 1 2 M x −x m ⇒− f 00 (x)dx ≤ − ≤ 12 2 12 0 Z 1 2 x −x f 00 (x)dx ≤ M ⇒m ≤ −12 2 0 Z 1 ⇒m ≤ −12 f (x)dx ≤ M 0 Z 1 f (x)dx ≤ f 00 (b). ⇒f 00 (a) ≤ −12 ∀x ∈ [0, 1] ∀x ∈ [0, 1] 0 Since f 00 is continuous on [0, 1] and a, b ∈ [0, 1] , by the Intermediate Value Theorem, there exists Z 1 Z 1 1 00 c ∈ [0, 1] such that f (c) = −12 f (x)dx, or equivalently f (x)dx = − f 00 (c). 12 0 0 NUS Math LaTeXify Proj Team Page: 6 of 6 NUS Mathematics Society
© Copyright 2025 ExpyDoc