MATH1010 Further Exercise on Integration 1. Evaluate the definite integrals below: (a) Z 4 |x(2 − x)|dx 0 Z (b) 2 |x2 − 3x + 2|dx 0 Z (c) 2 |x3 − x2 − 2x|dx −1 2. Evaluate the definite/indefinite integrals below: (a) Z (e) Z x(x + 2)99 dx (f) (i) Z xdx √ x+9 Z (l) Z x(x2 + 2)99 dx 2 (j) 3 Z (b) Z 4 3 5 √ 1 x dx 25 − x2 xdx 4x + 5 1 3 x (1 + 3x ) dx Z (k) 0 2 Z (m) 3 0 (x2 Z x √ dx 3x2 + 1 Z (c) (g) 1 2 2 3x + 9x − 12x + 4 dx 9x5 − 12x4 + 4x3 1 √ √ x x − 1dx 1 −1 (d) (h) Z Z 2 0 x2 √ dx 9 − x3 √ (x + 2) x − 1dx 1 + x2 dx 1 + 9x2 2(x − 1) dx + 3)(x + 1)2 3. Evaluate the definite/indefinite integrals below: (a) (d) 3π 4 Z π 4 Z (g) Z (j) Z π 2 (b) (sin(x) + cos(x))2 dx (e) π sin5 (x)dx Z (h) 0 sin3 (x) cos4 (x)dx π 2 (l) (o) Z 2 x sin (x )dx Z π | sin(2x) − sin(x)|dx 0 (1 + cos(x))4 dx (i) Z (f) Z π 2 π 2 cos(3x) cos(x)dx sin6 (x) cos2 (x)dx 0 cos6 (x)dx 0 csc4 (x) cos(x)dx 2dx (n) cot(x/2) + tan(x/2) Z π ||sin(2x)| − sin(x)| dx (p) Z Z (c) 0 0 (k) (m) cos3 (x) sin2 (x)dx cos5 (x) sin2 (x)dx 0 2 π 2 Z 0 π 2 Z Z (sin(x) − cos(x))dx Z √ 2π x3 cos2 (x2 )dx 0 0 4. Evaluate the definite/indefinite integrals below: 5 (a) Z (d) Z (g) (i) (l) (o) √ 1 + 3xdx Z (b) 0 2(x2 + x)e2x dx 3 0 (e) 3x + 4 √ dx (c) x+1 Z 1 1 ln(x)dx + x x2 Z √ x dx 1+x Z (f) e−5x sin(4x)dx x5 dx . (Try not to ‘break up’ x3 − 1.) x3 − 1 Z Z 1 3 Z x +x 1 − 2x x+1 dx (j) dx (k) dx 2 2 3 2 3 x (x + 1) x +x +x+1 0 x +1 Z Z π2 Z π4 24dx dx 4 sec (x)dx (n) (m) 2 x3 − x2 − 9x + 9 (1 + cos(x)) 0 0 Z Z π4 Z π2 x sin2 (x)dx (p) (1 + sec(x)) tan(x)dx (q) tan3 (x)dx dx 2 x − 3x + 2 Z (h) Z 0 (r) (u) Z 0 π 3 (1 + tan6 (x))dx (s) 0 Z dx (1 + cos(x)) sin(x) (v) Z π 6 sin(x) tan(x)dx (t) Z cos2 (x) cot(x)dx (w) Z cos2 (2x) dx sin (x) cos2 (x) 0 Z π 6 0 tan(x)dx 1 + sin2 (x) 1 4 (x) 5. (a) 1 + cos(x) dx x + sin(x) Z x + sin(x) dx 1 + cos(x) Z (y) i. Express 5 + 4 cos(x) + sin(x) in the form a cos2 ii. Hence, or otherwise, compute Z π 2 0 (z) x 2 Z π 2 0 + b sin2 dx . 5 + 4 cos(x) + 3 sin(x) s 1 − sin(x) dx 1 + sin(x) x 2 , where a, b are constants. (b) Apply the above method, or otherwise, to evaluate the definite/indefinite integrals below: Z dx i. 1 + sin(x) + cos(x) Z dx ii. 4 cos(x) + 3 sin(x) Z π2 dx iii. 2 + cos(x) 0 π 2 dx . 3 + 2 sin(x) + cos(x) Z π2 (2 sin(x) + cos(x))dx (b) Hence, or otherwise, evaluate . 3 + 2 sin(x) + cos(x) 0 6. (a) Evaluate 7. Show that Z π 0 Z 0 x sin(x) dx = 1 + cos2 (x) Z π 0 (π − x) sin(x) dx. Hence, or otherwise, evaluate both definite integrals. 1 + cos2 (x) Z π2 sin4 (x) cos4 (x) dx = dx. 4 4 4 π sin (x) + cos (x) sin (x) + cos4 (x) 0 2 Z π sin4 (x) (b) Hence, or otherwise, compute dx. 4 4 0 sin (x) + cos (x) Z π Z π x sin4 (x) (π − x) sin4 (x) (c) Show that dx = dx. Hence, or otherwise, evaluate both definite 4 4 4 4 0 sin (x) + cos (x) 0 sin (x) + cos (x) integrals. 8. (a) Show that Z π 9. Let n be a positive integer. (a) Show that cos(x) + cos(3x) + cos(5x) + · · · + cos((2n − 1)x) = (b) Evaluate (c) Evaluate Z Z π 3 sin(2nx) whenever sin(x) 6= 0. 2 sin(x) sin(2nx) dx sin(x) π 6 π 3 π 6 (sin(x) + 3 sin(3x) + 5 sin(5x) + · · · + (2n − 1) sin((2n − 1)x)) dx. 10. For any positive integer n, define In = (a) Show that whenever n ≥ 2, In = Z 1 0 √ xn 1 − xdx. 2n In−1 . 2n − 3 (b) Evaluate I10 . 11. For any positive integers m, n, define Im,n = Z 0 Im,n = π 2 sinm (x) cosn (x)dx. Show that, whenever m, n ≥ 2, n−1 n−1 m−1 m−1 Im−2,n = Im,n−2 = Im+2,n−2 = Im−2,n+2 . m+n m+n m+1 n+1 2 dn n −x (x e ) on R is a polynomial function dxn of degree n with leading coefficient 1. (Hint: Apply Leibniz’s Rule.) 12. (a) Let n be a non-negative integer. Show that the function (−1)n ex (b) For each non-negative integer, define the function Ln : R −→ R by Ln (x) = (−1)n ex dn n −x (x e ). dxn Suppose m, n are positive integers. i. Show that lim x→+∞ Z x −t Ln (t)Lm (t)e dt = (−1) n−1 lim x→+∞ 0 Z x 0 ii. Hence, or otherwise, show that lim x→+∞ Z x 0 (n!)2 Ln (t)Lm (t)e−t dt = 0 dn−1 n −t ′ t e Lm (t)dt, dtn−1 if n=m if n 6= m 13. Let f : R −→ R be a function. Suppose f is differentiable on R and f (0) = f (1) = 0. Z 1 Z 1 1 xf (x)f ′ (x)dx = − . (f (x))2 dx = 1. Show that Further suppose 2 0 0 14. Evaluate the limits below. (a) (d) 1 lim h→0 h lim h→0+ Z sin(h) sin( 0 1 ln(1 + h) Z p t2 3h+2 2 + t4 )dt p 15. Define f : (0, +∞) −→ R by f (x) = (a) Show that f (x) = 1 x Z x2 1 1 lim h→0 h sin(h) (b) Z h2 t2 e dt (c) 0 1 lim h→0 h Z (d) Z h −h t6 + 2t4 + 3t2 + 4dt Z x x−1 q 3 sin5 (t) dt √ cos( xt)dt for any x ∈ (0, +∞). √ cos( u)du for any x ∈ (0, +∞). ′ (b) Find the value of f (1). 16. Evaluate the first derivative of the functions of x below. (a) (e) Z Z x3 x −2 p sin(x) 0 t4 + t + 1dt. cos(x2 ) cos(t2 ) dt 2+t (b) Z (f) 2x 2 e3t dt (c) x Z x2 sin x t x2 dt Z x 7 −x | cos(t)| 2 dt (g) Z x 20 Z u 10 3 0 dt 4 1 + t + sin4 (t) 17. Let f : [0, 1] −→ R be a function. Suppose f is continuous on [0, 1]. Further suppose that for any x ∈ [0, 1]. Show that f (x) = 0 for any x ∈ [0, 1]. sin(x) Z cos2 (t2 ) dt 2 + t2 du x f (t)dt = 0 Z 1 f (t)dt x
© Copyright 2025 ExpyDoc