Searching signals at the Nightmare scenario -

重いSUSY?(その動機と暗黒物質)

最近のBICEP2の影響についても言及する!
[Harigaya, Ibe, Ichikawa, Kaneta, S.M., arXiv:1403.5880]
松本 重貴 (カブリ数物連携宇宙研究機構)
1. 重いSUSYの定義、そしてその動機について
2. 重いSUSYの予言する暗黒物質とLHC実験
3. 重いSUSYのまとめと今後の展望
1/11
重いSUSYについて
全てのスカラー粒子(ヒッグスを除く)が10—100TeVと重いSUSY模型
↓
フェルミオニック超対称粒子は?  様々な可能性
Mass (TeV)
10-100
0.1-1
Split-SUSY
Pure Gravity Focus point
Scalars
Scalars
Higgsinos
Scalars
Gauginos
Higgsinos
Gauginos
Gauginos
Higgsinos
Super-split
Scalars
Higgsinos
Gauginos
[N. Arkani-Hamed [M. Ibe, T. Moroi, [J. Feng, T. Moroi, [There must be
& T. T. Yanagida,
and K. Matchev, several papers,
& S. Dimopoulos,
PLB644, 2007]
PRD61, 2000] since long ago.]
JHEP 0506, 2005]
もっと重かった
これ中心にいく
横崎君トーク
≒ SM
2/11
重いSUSYについて
~ 現象論の観点からの重いSUSYを考える動機 ~
Mass
(TeV) Gravitino,
Scalars,
Higgsinos
100
10
1
標準模型 vs. 重いSUSY (PGM)
Gluinos
Bino
Winos
Higgs
0.1
Phenomenological advantages
• Higgs mass of 126GeV
• SUSY Flavor/CP prob. relaxed
• Dark matter candidate
• No gravitino problem
• Compatible w/ leptogenesis
• GUT works (永田君トーク)
標準模型
重いSUSY
Higgs mass
○
◎
Flavor/CP
○
Gravitino
◎
○
Dark matter
×
○
◎
Coupling U.
×
◎
Naturalness
×
△
3/11
重いSUSYについて
~ 模型構築の観点からの重いSUSYを考える動機 ~
Mass
(TeV) Gravitino,
Scalars,
Higgsinos
Scalar masses: [Gravitino mass is fixed to be O(100)TeV]
m-term: [Inoue, Kawasaki,
Yamaguchi, Yanagida, 1992]
100
Minimal (Simplest) Setup!
MSSM
10
1
Gluinos
Bino
Winos
Higgs
0.1
SUGRA interactions
No singlets →
SUSY
Anomaly Mediation:
[H.Murayama, et. al., 1998;
L.Randall, et. al., 1999]
[Hisano, S.M., Nagai, Saito, Senami, 2007 (TH);
Dark Matter: T. Moroi, et. al., 1999 (NT),]
Higgs mass: [Okada, Yamaguchi, Yanagida, 1990; Ellis, et. al., 1990]
= A conjecture on SUSY breaking mediation
[Ibe, Moroi, Yanagida (2007), Ibe, Yanagida (2011), Ibe, Matsumoto, Yanagida (2012)]
4/11
重いSUSYについて
長井君トーク
・ Effective Lagrangian:
Mass
(TeV) Gravitino,
Scalars,
Higgsinos
・ Gaugino masses (@ MSUSY scale):
佐藤君トーク
+ other contributions
100
+ other contributions
+ other contributions
[From PQ sector [K. Nakayama & T. T. Yanagida, PLB722, 2013]
[Vector Matters [K. Harigaya, M. Ibe, T. T. Yanagida, JHEP1312]
10
1
Gluinos
Bino
Winos
Higgs
0.1
・ Charged wino mass (Dm ~ 150—164 MeV)
[Independent of the gaugino mass]
[Y. Yamada, PLB682, 2010; M.Ibe, S.M., R. Sato, PLB721, 2013]
・ Several DM regions:
1. Bino DM  This region has already been ruled out.
2. Wino DM  [Hisano, S.M., Nagai, Saito, Senami, 2007]
3. Coannihilation regions  [Harigaya, Kaneta, S. M., 2014]
重いSUSYの暗黒物質
5/11
~ Wino dark matter region ~
Thermal relic abundance:
[J.Hisano, S.M., M.Nagai,
O.Saito, M.Senami, 2007]
Annihilations modes are
w0w0, w+w-, w0w±, w±w±.
Wino DM with its mass of about
3.1TeV explains the Planck data.
Non-thermal contribution:
Gravitino produced after inflation.
 Its decay into DM at late time.
 DWDMh2 = 0.16(m/0.3TeV)
×(TR/1010GeV).
[Gherghetta, Giudice; Wells, Moroi, Randall, 1999]
Wino DM with its mass less than
3.1TeV explains the Planck data.
The BICEP2 Result
[M. Ibe, T. T. Yanagida, 2011]
6/11
重いSUSYの暗黒物質
~ Wino dark matter region ~
2.3 3.1
0.27 0.32
mwino
0.5TeV
0.1TeV
From Collider (LHC) experiment:
5TeV
1TeV
From DM indirect detections:
BICEP2
[PRD88, 2013]
Continuum g
Disappearing
track search!
Line g
• Wino mass up to 500GeV will be explored in future (100fb-1@14TeV).
• Is it possible to use “the double disappearing tracks search” at HL-LHC?
• Chargino productions via VBF is useful? [s ~ 0.4fb@14TeV, |Dh| > 4.2]
[Bhattacherjee, Feldstein, Ibe, S.M., Yanagida, PRD87, 2013, Snowmass rept. arXiv:1308.0355]
重いSUSYの暗黒物質
7/11
~ Bino-Gluino coannihilation ~
BICEP2
Thermal relic abundance:
Annihilations modes:
gluino + gluino (Sommerfeld)
gluino + bino (Suppressed)
bino + bino (Suppressed)
Chemical equilibrium between
gluino and bino maintains due
to conversion processes, etc.
• Dark matter can be as heavy as several TeV with the mass difference
between gluino and wino being of the order of O(100)GeV.
• No signals are expected in direct and indirect DM observations.
• The only possible way to explore the DM is the use of “Hadron Collider”.
• Process at the LHC is pp  gluino + gluino (gluino  bino + two jets),
where the gluino is degenerated with the bino dark matter.
• Initial state radiations play important roles, pp  gluino+gluino+jet(s).
Bino mass up to 1TeV will be covered in near future (green/blue lines).
[B. Bhattacherjee, et. al., PRD89, 2014, S. Mukhopadhyay, M. Nojiri, T. T. Yanagida, arXiv:1403.6028]
重いSUSYの暗黒物質
8/11
~ Wino-Gluino coannihilation ~
Thermal relic abundance:
Annihilations modes:
gluino + gluino (Sommerfeld)
gluino + wino (Suppressed)
wino + wino (Sommerfeld)
Chemical equilibrium between
gluino and bino maintains due
to conversion processes, etc.
• The mass of the dark matter is predicted to be 3—7 TeV in this region,
where it is smoothly connected to 3.1TeV predicted by the wino DM.
• In order to explore the DM in this coannihilation region, we have to
rely on the indirect DM detection utilizing (monochromatic) g-rays, so
that future air Cherenkov telescopes (CTA) will play important roles.
• If we impose the limit from the line g-ray observation at H.E.S.S. with
adopting the cuspy profile, the wino mass up to 3.3TeV is ruled out.
[ T. Cohen, M. Lisanti, A. Pierce, and T. R. Slatyer, JCAP10, 061, 2013 ]
• Even in such a case, we find the allowed mass region of 3.5—7 TeV.
重いSUSYの暗黒物質
9/11
~ Bino-Wino coannihilation ~
BICEP2
Thermal relic abundance:
Annihilations modes:
wino + wino (Sommerfeld)
wino + bino (Suppressed)
bino + bino (Suppressed)
Chemical equilibrium between
gluino and bino maintains due
to conversion processes, etc.
• The mass of the bino DM can be as heave as about 2TeV with the mass
difference between the bino DM and the wino being 10—40GeV.
• The bino mass less than 90GeV has already been ruled out by LEPII.
• The most important process to explore the DM at the LHC is the wino
production (charged wino + neutral wino, two charged wino modes).
☆ Charged wino decays into W* + bino with almost 100% branching.
☆ Neutral wino decays into Z* + bino, l+l– + bino, h* + bino, and their
branching fractions depend on the masses of higgsino & sleptons.
• The best process is pp  charged and neutral winos  llln + 2binos.
重いSUSYの暗黒物質
10/11
~ Wino-Bino coannihilation ~
Thermal relic abundance:
Annihilations modes:
bino + bino (Suppressed)
bino + wino (Suppressed)
wino + wino (Sommerfeld)
Chemical equilibrium between
gluino and bino maintains due
to conversion processes, etc.
• The mass of the wino DM is predicted to be smaller than 3.1TeV, with
the mass difference between the bino DM and wino being 100—200 GeV.
• In order to explore the DM in this coannihilation region, we have to
rely on the indirect DM detection utilizing (monochromatic) g-rays, so
that future air Cherenkov telescopes (CTA) will play important roles.
• If we impose the limit from the line g-ray observation at H.E.S.S. with
adopting the cuspy (Einasto or NFW) dark matter profile, the whole
parameter (mass) space in this coannihilation region is ruled out.
重いSUSYのまとめと今後の展望
11/11
• 重いSUSYのシナリオ(Pure Gravity Mediation type)は、現象論及び理
論の両側面から非常に魅力的。しかもゲージーノは軽いので、現在及び
BICEP2の結果を考慮すると
近い将来に行われる実験・観測でシグナルが見える可能性が有る。
(T = 2 x 109GeVを仮定)
R
• 重いSUSYのシナリオ(Pure Gravity Mediation type)が予言する暗黒物
質(領域)とそれら検出に関する今後の展望は以下の通り。
0.9TeV
☆ Bino DM Region: ノーマルな宇宙論を考えると既に排除済み。
☆ Wino DM Region: 3.1TeV or (0.3—3.1TeV)を予言。質量が低い
領域はLHC(消失荷電トラック検出)が、高い領域
0.5-1TeV
はγ線を用いた暗黒物質の間接検出が有効。
☆ Bino(DM)-Gluino: 0.5—8TeVを予言。ハドロン加速器がアクセス可。
0.9-1TeV
特に縮退系のグルイーノ対生成の検出が大事。
☆ Wino(DM)-Gluino: 3.1—7TeVを予言。γ線を用いた暗黒物質の間
0.1-0.9TeV
接検出(銀河中心からのラインγ線)が大事。
☆ Bino (DM)-Wino: 0.1—3TeVを予言。加速器における荷電&中性
0.9TeV
ウィーノ生成からのトリ・レプトン検出が大事。
☆ Wino (DM)-Bino: 2.8—3.1TeVを予言。γ線を用いた暗黒物質の間
接検出(銀河中心からのラインγ線)が大事。