重いSUSY?(その動機と暗黒物質) 最近のBICEP2の影響についても言及する! [Harigaya, Ibe, Ichikawa, Kaneta, S.M., arXiv:1403.5880] 松本 重貴 (カブリ数物連携宇宙研究機構) 1. 重いSUSYの定義、そしてその動機について 2. 重いSUSYの予言する暗黒物質とLHC実験 3. 重いSUSYのまとめと今後の展望 1/11 重いSUSYについて 全てのスカラー粒子(ヒッグスを除く)が10—100TeVと重いSUSY模型 ↓ フェルミオニック超対称粒子は? 様々な可能性 Mass (TeV) 10-100 0.1-1 Split-SUSY Pure Gravity Focus point Scalars Scalars Higgsinos Scalars Gauginos Higgsinos Gauginos Gauginos Higgsinos Super-split Scalars Higgsinos Gauginos [N. Arkani-Hamed [M. Ibe, T. Moroi, [J. Feng, T. Moroi, [There must be & T. T. Yanagida, and K. Matchev, several papers, & S. Dimopoulos, PLB644, 2007] PRD61, 2000] since long ago.] JHEP 0506, 2005] もっと重かった これ中心にいく 横崎君トーク ≒ SM 2/11 重いSUSYについて ~ 現象論の観点からの重いSUSYを考える動機 ~ Mass (TeV) Gravitino, Scalars, Higgsinos 100 10 1 標準模型 vs. 重いSUSY (PGM) Gluinos Bino Winos Higgs 0.1 Phenomenological advantages • Higgs mass of 126GeV • SUSY Flavor/CP prob. relaxed • Dark matter candidate • No gravitino problem • Compatible w/ leptogenesis • GUT works (永田君トーク) 標準模型 重いSUSY Higgs mass ○ ◎ Flavor/CP ○ Gravitino ◎ ○ Dark matter × ○ ◎ Coupling U. × ◎ Naturalness × △ 3/11 重いSUSYについて ~ 模型構築の観点からの重いSUSYを考える動機 ~ Mass (TeV) Gravitino, Scalars, Higgsinos Scalar masses: [Gravitino mass is fixed to be O(100)TeV] m-term: [Inoue, Kawasaki, Yamaguchi, Yanagida, 1992] 100 Minimal (Simplest) Setup! MSSM 10 1 Gluinos Bino Winos Higgs 0.1 SUGRA interactions No singlets → SUSY Anomaly Mediation: [H.Murayama, et. al., 1998; L.Randall, et. al., 1999] [Hisano, S.M., Nagai, Saito, Senami, 2007 (TH); Dark Matter: T. Moroi, et. al., 1999 (NT),] Higgs mass: [Okada, Yamaguchi, Yanagida, 1990; Ellis, et. al., 1990] = A conjecture on SUSY breaking mediation [Ibe, Moroi, Yanagida (2007), Ibe, Yanagida (2011), Ibe, Matsumoto, Yanagida (2012)] 4/11 重いSUSYについて 長井君トーク ・ Effective Lagrangian: Mass (TeV) Gravitino, Scalars, Higgsinos ・ Gaugino masses (@ MSUSY scale): 佐藤君トーク + other contributions 100 + other contributions + other contributions [From PQ sector [K. Nakayama & T. T. Yanagida, PLB722, 2013] [Vector Matters [K. Harigaya, M. Ibe, T. T. Yanagida, JHEP1312] 10 1 Gluinos Bino Winos Higgs 0.1 ・ Charged wino mass (Dm ~ 150—164 MeV) [Independent of the gaugino mass] [Y. Yamada, PLB682, 2010; M.Ibe, S.M., R. Sato, PLB721, 2013] ・ Several DM regions: 1. Bino DM This region has already been ruled out. 2. Wino DM [Hisano, S.M., Nagai, Saito, Senami, 2007] 3. Coannihilation regions [Harigaya, Kaneta, S. M., 2014] 重いSUSYの暗黒物質 5/11 ~ Wino dark matter region ~ Thermal relic abundance: [J.Hisano, S.M., M.Nagai, O.Saito, M.Senami, 2007] Annihilations modes are w0w0, w+w-, w0w±, w±w±. Wino DM with its mass of about 3.1TeV explains the Planck data. Non-thermal contribution: Gravitino produced after inflation. Its decay into DM at late time. DWDMh2 = 0.16(m/0.3TeV) ×(TR/1010GeV). [Gherghetta, Giudice; Wells, Moroi, Randall, 1999] Wino DM with its mass less than 3.1TeV explains the Planck data. The BICEP2 Result [M. Ibe, T. T. Yanagida, 2011] 6/11 重いSUSYの暗黒物質 ~ Wino dark matter region ~ 2.3 3.1 0.27 0.32 mwino 0.5TeV 0.1TeV From Collider (LHC) experiment: 5TeV 1TeV From DM indirect detections: BICEP2 [PRD88, 2013] Continuum g Disappearing track search! Line g • Wino mass up to 500GeV will be explored in future (100fb-1@14TeV). • Is it possible to use “the double disappearing tracks search” at HL-LHC? • Chargino productions via VBF is useful? [s ~ 0.4fb@14TeV, |Dh| > 4.2] [Bhattacherjee, Feldstein, Ibe, S.M., Yanagida, PRD87, 2013, Snowmass rept. arXiv:1308.0355] 重いSUSYの暗黒物質 7/11 ~ Bino-Gluino coannihilation ~ BICEP2 Thermal relic abundance: Annihilations modes: gluino + gluino (Sommerfeld) gluino + bino (Suppressed) bino + bino (Suppressed) Chemical equilibrium between gluino and bino maintains due to conversion processes, etc. • Dark matter can be as heavy as several TeV with the mass difference between gluino and wino being of the order of O(100)GeV. • No signals are expected in direct and indirect DM observations. • The only possible way to explore the DM is the use of “Hadron Collider”. • Process at the LHC is pp gluino + gluino (gluino bino + two jets), where the gluino is degenerated with the bino dark matter. • Initial state radiations play important roles, pp gluino+gluino+jet(s). Bino mass up to 1TeV will be covered in near future (green/blue lines). [B. Bhattacherjee, et. al., PRD89, 2014, S. Mukhopadhyay, M. Nojiri, T. T. Yanagida, arXiv:1403.6028] 重いSUSYの暗黒物質 8/11 ~ Wino-Gluino coannihilation ~ Thermal relic abundance: Annihilations modes: gluino + gluino (Sommerfeld) gluino + wino (Suppressed) wino + wino (Sommerfeld) Chemical equilibrium between gluino and bino maintains due to conversion processes, etc. • The mass of the dark matter is predicted to be 3—7 TeV in this region, where it is smoothly connected to 3.1TeV predicted by the wino DM. • In order to explore the DM in this coannihilation region, we have to rely on the indirect DM detection utilizing (monochromatic) g-rays, so that future air Cherenkov telescopes (CTA) will play important roles. • If we impose the limit from the line g-ray observation at H.E.S.S. with adopting the cuspy profile, the wino mass up to 3.3TeV is ruled out. [ T. Cohen, M. Lisanti, A. Pierce, and T. R. Slatyer, JCAP10, 061, 2013 ] • Even in such a case, we find the allowed mass region of 3.5—7 TeV. 重いSUSYの暗黒物質 9/11 ~ Bino-Wino coannihilation ~ BICEP2 Thermal relic abundance: Annihilations modes: wino + wino (Sommerfeld) wino + bino (Suppressed) bino + bino (Suppressed) Chemical equilibrium between gluino and bino maintains due to conversion processes, etc. • The mass of the bino DM can be as heave as about 2TeV with the mass difference between the bino DM and the wino being 10—40GeV. • The bino mass less than 90GeV has already been ruled out by LEPII. • The most important process to explore the DM at the LHC is the wino production (charged wino + neutral wino, two charged wino modes). ☆ Charged wino decays into W* + bino with almost 100% branching. ☆ Neutral wino decays into Z* + bino, l+l– + bino, h* + bino, and their branching fractions depend on the masses of higgsino & sleptons. • The best process is pp charged and neutral winos llln + 2binos. 重いSUSYの暗黒物質 10/11 ~ Wino-Bino coannihilation ~ Thermal relic abundance: Annihilations modes: bino + bino (Suppressed) bino + wino (Suppressed) wino + wino (Sommerfeld) Chemical equilibrium between gluino and bino maintains due to conversion processes, etc. • The mass of the wino DM is predicted to be smaller than 3.1TeV, with the mass difference between the bino DM and wino being 100—200 GeV. • In order to explore the DM in this coannihilation region, we have to rely on the indirect DM detection utilizing (monochromatic) g-rays, so that future air Cherenkov telescopes (CTA) will play important roles. • If we impose the limit from the line g-ray observation at H.E.S.S. with adopting the cuspy (Einasto or NFW) dark matter profile, the whole parameter (mass) space in this coannihilation region is ruled out. 重いSUSYのまとめと今後の展望 11/11 • 重いSUSYのシナリオ(Pure Gravity Mediation type)は、現象論及び理 論の両側面から非常に魅力的。しかもゲージーノは軽いので、現在及び BICEP2の結果を考慮すると 近い将来に行われる実験・観測でシグナルが見える可能性が有る。 (T = 2 x 109GeVを仮定) R • 重いSUSYのシナリオ(Pure Gravity Mediation type)が予言する暗黒物 質(領域)とそれら検出に関する今後の展望は以下の通り。 0.9TeV ☆ Bino DM Region: ノーマルな宇宙論を考えると既に排除済み。 ☆ Wino DM Region: 3.1TeV or (0.3—3.1TeV)を予言。質量が低い 領域はLHC(消失荷電トラック検出)が、高い領域 0.5-1TeV はγ線を用いた暗黒物質の間接検出が有効。 ☆ Bino(DM)-Gluino: 0.5—8TeVを予言。ハドロン加速器がアクセス可。 0.9-1TeV 特に縮退系のグルイーノ対生成の検出が大事。 ☆ Wino(DM)-Gluino: 3.1—7TeVを予言。γ線を用いた暗黒物質の間 0.1-0.9TeV 接検出(銀河中心からのラインγ線)が大事。 ☆ Bino (DM)-Wino: 0.1—3TeVを予言。加速器における荷電&中性 0.9TeV ウィーノ生成からのトリ・レプトン検出が大事。 ☆ Wino (DM)-Bino: 2.8—3.1TeVを予言。γ線を用いた暗黒物質の間 接検出(銀河中心からのラインγ線)が大事。
© Copyright 2024 ExpyDoc