Physics @ LHC (Physics @ TeV) Status of LHC/ATLAS/CMS and Physics explored at LHC Fundamentalist of High Energy Physics (U. Tokyo) [4] SuperSymmetry O(TeV) SUSY provides GUT and good candidate of cold dark matter. [4-1] Production cross-section at LHC ( g˜ g˜ , g˜ q˜ , q˜ q˜ ) g˜ : 2TeV q˜ :1TeV These couplings are just strong interaction (αs): large cross-section is expected q˜ : 2TeV model independent except for mass m(q˜ ) m(g˜ ) 0.5TeV g˜ :1TeV m(q˜ ) m(g˜ ) 1TeV m(q˜ ) m(g˜ ) 2TeV σ〜100pb g˜ g˜ σ〜3pb σ〜20fb u˜u˜, u˜d˜ [4-2] Events topology of SUSY Gluino/squark are produced copiously, (Gravity- mediation + R-parity) Cascade decay is followed. Many high Pt jets emit in this cascade , Finally nu1 escapes from detection event topologies of SUSY multi leptons ET + High PT jets (+ b-jets ) τ-jets Especially no or one lepton mode is promising for Discovery [4-3] background Meff distributions after SUSY cut High Pt jets are estimated with Matrix Element (ALPGEN 2.05) ME + PS matching is applied: 1 lepton mode Count /400GeV/1fb-1 Count /400GeV/1fb-1 0 lepton mode Meff Pt mEt OPEN HIST show the SUSY signal M( g˜ ) ~ M(q˜ ) ~ 1TeV L=1fb-1 Meff Pt mEt (tanβ=10) Main Background processes are top-pair ,W and Z with jets, They include high Pt neutrino(s): QCD jet (with fake mET, due to the limited resolution of detector) also contributes to no-lepton mode (mET performance is crucial for SUSY hunting) Clear excess can be observed in one-lepton mode & no-lepton mode. SUSY signal M( g˜ ) ~ M(q˜ ) ~ 0.9TeV Red: co-annihilation (light stau) Black: bulk Dilepton mode Opposite Sign dilepton ATLAS Preliminary Number/1fb^-1 Number/1fb^-1 ATLAS Preliminary Same Sign dilepton mET (GeV) Almost Background Free mET (GeV) Stat. is limited but excess can be observed also in dilepton mode. Top pair is dominant BG for one-lepton and di-lepton modes. BG can be estimated with real data easily. [4-4] Understanding of the background processes Background is estimated with “real data itself” (not estimated with MC): We have good control samples of Z(→ee/mumu)+jets, W(→lν)+jets and tt→bblνqq with MT<MW. From them, the background of Z(→νν),W(→lν), tt with large mET & MT>MW:) can be estimated. For examples: these four plots show mET spectra for various processes ATLAS Preliminary Z and W background for no-lepton mode Top pair background for one lepton mode R:tt BG B:estimated Without SUSY signal With 1TeV SUSY signal Background could be estimated with real data itself with accuracy of about 50% [4-5] Discovery Potential (including systematic errors) tanβ=10, L=1fb-1 Band shows the effect of systematic errors coming from background estimations tanβ=50, L=1fb-1 Results do not strongly depend on tanβ … One lepton & no lepton mode have the similar potential: q˜ , g˜ g˜ up to 1.5TeV if m0 <1TeV up to 1TeV (if squark heavy) m(g˜ ) 2.5m1/2 2 m(q˜ ) m20 +6m1/2 We can discover SUSY with various event topologies: multi leptons ET + High PT jets + b-jets τ-jets Not only Lepton, But also.. These carry information about EW gaugino sector Let’s combine ATLAS & CMS With L=1fb-1 q˜ , g˜ M (TeV) Up to 1.6TeV (2TeV for 95%CL exclusion) 2.5 These do not strongly depend on model: Important parameters are masses of q˜ , g˜ and the mass difference between them and LSP(>= 400GeV) 2 1.5 1 ATLAS + CMS 1 100 10 Luminosity/expt (fb-1) 1 fb-1/expt ~ g 〜1.6TeV ˜ 1 500GeV ˜ 10 250GeV Naïve GUT assumption Gaugino-like [4-6] Exclusive Study: mass can be measured: g˜ Select interesting decay chain: Make kinematic distributions: Edge carries the information related to their masses: ˜ 10 q q ˜ R ˜ 20 q˜ Sharp Edge Mmaxll 2 ˜ 20 )2 )(m( ˜ 20 )2 m( ˜10 )2 ) (m(˜qL ) m( max Mllq ˜ 20 )2 m( 2 Mlqmax M ˜ 20 )2 )(m( ˜ 20 )2 m(l˜R )2 ) (m(˜qL )2 m( ˜ 20 )2 m( max Masses can be determined with an accuracy of about 1-10% (with help of model in general) model independent study on the coupling/mass is difficult @ LHC 2 m( ˜ R ) m( ˜ 10 ) 0 ˜ m( 2 ) 1 1 ˜ ˜ 20 ) m( m( R ) [6] Introduction and Conclusion: Most important/urgent topics in Particle Physics are: (1) Understanding of “the origin of mass” (EW symmetry breaking) SSB of Higgs field is most promising scenario, but should be examined directly: & determine the potential: (2) Beyond the Standard Model Supersymmetry is most promising, Large Extra Dimension, unexpected scenario… are also exciting. These are main purpose of LHC project: and LHC will give the clear solutions 2008 !! Appendix: Mt can be measured with accuracy of 0.9GeV, Mw will be 15MeV(Very difficult task. Z’ or high mass gauge boson 5TeV, Littele Higgs heavy top 1TeV Backup 2-1 m SUGRAの簡単な纏め 5つのパラメター : mo, m1/2, tanβ, A0, (mass @GUT) sign(μ) (VEV) (scalar 3点) (Higgsino mass) 一般的な傾向 ˜ , q˜ ) は重い •Coloured partciles ( g • ˜ 10 はLSPで安定(R-parity) Cold DMの良い候補 •Higgsino mass (|μ|) > 0.8m1/2(Wino) (m0>>m1/2の場合以外) → 0 ˜0 0 ˜ 0 ˜ 0 ˜ ˜ 1 B , ˜ 2 W , ˜ 1 W , ˜ 3,4 , ˜2 H •第3世代の f˜ は軽い。(Yukawa+LR mixingの効果) ˜ g˜ , g˜ q˜ , q˜ q˜ ) である。 LHCでの主なSUSY生成過程は、( g 生成断面積は、これらのmass以外にはモデル依存性が小さい。 ただのstrong interaction ˜ 0 , ˜ , l˜ らは、 g˜ , q˜ の崩壊過程で出てくる (多段cascade崩壊)LEP,Tevatronとの大きな違い g˜ , q˜ のdecay table m( g˜ ) m(q˜ ) g˜ m( g˜ ) m(q˜ ) qq B˜ 0 ( 1) g˜ qq W˜ 0 ( 2) qq W˜ ( 4) m( g˜ ) m(q˜ ) g˜ qq˜ tt˜1 g˜ ˜ bb 1 q˜ L q˜ R q˜ L qg˜ q˜ R qg˜ qW˜ 0 ( 1) q˜ L qW˜ ( 2) q˜ R qB˜ 0 ここら辺はあまりモデルによらない。Massの関係やB,Wとχの関係、第3世代などがモデル依存 ˜ , ˜ 1 0 2 の崩壊モードについて 2-Body decay chain ˜ 1 ),m( ˜ 20 ) m(˜ ) m( I ˜ 1 ˜ ˜ 10 II Decay to Higgs ˜ ) m( ˜ ) m(h) m( 0 2 0 1 ˜ 20 h ˜ 10 ˜ 20 ˜ ˜ W ˜ 1 0 1 ˜ 10 Decay to W/Z m(h) m m(W , Z ) ˜ 20 Z 0 ˜ 10 ˜ 1 W ˜ 10 III IV 3-Body decay m m(W , Z ) ˜ 20 ff ˜ 10 ˜ 1 ff ˜ 10 これらは基本的にkinematics だけであり、依存性は少ない。 Sfermion propagatorで3body ˜ 1 が軽くなり、τへのdecay branchingが増える。 tan 1 の時 τ-IDが大切。Higgsino成分が多くなると、然り。
© Copyright 2024 ExpyDoc