環境応答生理学 2015 Physiology of Environmental Responses (484208) Class 6 (7-July, 2015) 江崎文一、且原真木(柴坂三根夫) Ezaki, Katsuhara (Shibasaka) 植物のアクアポリン (Plant aquaporins) Aquaporin = MIP (membrane intrinsic protein) PIP(plasm-membrane…) (原形質膜型) TIP(tonoplast….) (液胞膜型) NIP(Nodulin26-like…) SIP(small …) ER signaling? XIP(x …) シロイヌナズでは35個のMIP (35 Major Intrinsic Protein in Arabidopsis) (ヒトでは13個(human)、微生物は1から2個(bacteria)) XIPs are found in some plants (tomato, cotton, moss) but functions are not yet known Why many in plants? 細胞の水透過性をきめる 細 Determining cell water permeability 胞 外 ( 土 壌 ) 水 環 境 水透過性高い:細胞質の体積を維持 High permeability: maintain cytoplasm (Tyerman et al. J Exp Bot 50:1055, 1999) 液胞 Vacuole •Wet 核 •Dry •Salt stress (variable) nucleus (細胞体積の90%以上) (More than 90% volume) 細胞質(cytoplasm) Plasma-membrane Cell wall Number of MIP (aquaporin) genes in the genomes (at 2014) rice (Oryza sativa) Arabidopsis thaliana maize (Zea mays) poplar (Populus trichocarpa) soybean (Glycin max) cotton (Gossypium hirsutum) tomato (Solanum lycopersicum) potato (Solanum tuberosum) 39 35 36 55 66 48 47 41 Redundancy, Different localization, Developmental expression Different function (substrate or stress response) Seed maturation (formation and dehydration) TIP3;1 and 3;2 (old name a- and b-TIP) Germination (root emergency) TIP1;1 and others (old name g-TIP) (root elongation) TIP2;1(old name d-TIP) PIP2;1 and other PIPs PIPs in stomata (孔辺細胞のPIP) Aquaporins in tomato AtPIP2;2, 2;3, 2;5, 2;8 (in future) Artificial regulation of stomatal movements and fruit development via aquaporins 若い果実で多く発現するもの (Young fruits) Organ- and developmental-dependent expression analysis Data from RiceXPro OsPIP2;1 aquaporin Generally expressed OsTIP3;1 aquaporin Seed specific Different expression in tissue How to detect the in tissue distribution? Indirect immunofluorescense (間接蛍光抗体法) Alexa 647 (red) conjugated anti-rat IgG goat antibody Anti-HvPIP1s rat antibody (IgG) (common among HvPIP1s) HvPIP1s Alexa 488 (green) conjugated anti-rabbit IgG goat antibody Anti-HvPIP2;1 (or 2;2) rabbit antibody (IgG) (specific to each molecular species) HvPIP2s (明視野) 内皮 (抗PIP1s抗体) 根毛 中心柱 皮層 後生木部 表皮 (抗PIP2;2抗体) (Overlay) (PCP 52:663) 環境応答性 (Response to the environments) Rice PIPs OsPIP2;1 10 OsPIP2;5 8 6 4 2 0 -11 8 0 2 4 6 12 OsPIP2;1 10 OsPIP2;5 8 6 4 Submergence (冠水) TIP expression ↑ Cell elongation Node elongation (節間伸長) 2 0 2.0 -11 8 0 2 4 6 light , but evaporation-dependence 実は蒸散要求(湿度)に応答 Relative protein amount 12 (x 106 copies / 1μg total RNA) Humid (RH=90%) mRNA amounts (x 106 copies / 1μg total RNA) mRNA amounts Dry (RH=40~50%) 冠水適応に関与するOsTIPsの同定 (浮イネ Deepwater rice) OsTIP1:1 1.5 1.0 0.5 0 2.0 OsTIP2;2 1.5 1.0 0.5 0 N H A N H A 東北農業研究センター 1 day 3 days Submergence A:all 全冠水 H:Half 半冠水 N:non 無冠水 名古屋大 植物アクアポリンの多様な発現調節と活性調節 Various expressional and activity regulation in plant aquaporins Tissue, organ, and developmental specificity phosphorylation = activation = opening Aquaporin activity depends: protein amount (expression) gating (phosphorylation, pH, Ca,….) heteromerlization intracellular trafficking ナシ果実の肥大 (pear fruit ripping) Water 初期 early stage Cell division 中期~後期 mid to late stages Cell elongation with water absorption TIP aquaporin・・・expression ↑ PIP aquaporin・・・constant expression activation with phosphorylation 脱水耐性・・・・水透過性の制御(抑制)+浸透調節 Dehydration tolerance・・・Lpr regulation + osmotic regulation Lpr depends on PIP regulation <multi reactions> • Gating via phosphorylation (minutes) • Internalization (1-2 hours) • Degradation and expression (> several hours) Kjellbom et al. 4:308-314(1999) Standard sol. Early Effects of Salinity on GFP-LTP Water Transport in Arabidopsis Roots. Molecular and Cellular Features of Aquaporin PIP1;1-GFP Expression. Boursiac et al. Plant Physiology (2005) 139:790 PIP2;1-GFP Stimulus-induced downregulation of root water transport involves reactive oxygen species-activated cell signalling and plasma membrane intrinsic protein internalization. Boursiac et al. The Plant Journal (2008) 56, 207–218 100 mM NaCl 45 min 120 min 原形質膜マーカー タンパク Trafficking of Plant Plasma Membrane Aquaporins: Multiple Regulation Levels and Complex Sorting Signals Chevalier and Chaumont (2015) PCP 58 819 チューリップの開花 Opening tulip flower (Azad) • 低温 → 高温で開花 Low temp→high temp, then opening • 花の基部の細胞が吸水 Flower cells (lower part) uptake water • PIPの発現は恒常的 PIPs express constantly • TgPIP2;2がリン酸化で高温で活性化 TgPIP2;2 activation by phosphorylation under high temp 貧栄養(Low minerals) (Carvajal) 根のアクアポリン発現量が減少 (aquaporin expression ↓) → 根の吸水量減少 (root water permeability↓) → 地上部の成長抑制 (shoot growth↓) 葉の就眠運動 (leaf movements) (Moshelion) 朝(day):アクアポリンの活性上昇 amount/ activity↑ → 細胞の吸水増加(water influx) → 葉が開く leaf open 夜(night):アクアポリンの活性低下 amount/ activity↓ → 細胞が脱水 (deydration) → 葉が閉じる leaf close Substrates (輸送基質): water Glycerol B(OH)3 Si(OH)4 As(OH)3 NH3 Lactate CO2 H2O2 Low molecular weight, neutral 光合成の3つの律速段階とCO2透過性アクアポリンの関係 (photosynthesis and CO2-permeablr aquaporins) 大気 Air CO 固定の律速段階 2 気孔の透過 Stomatal conductance Stomata 気孔 CO2 細胞間隙 Intercellular space 炭酸固定酵素の効率 Cell wall 葉肉細胞 mesophyll cells 原形質膜 Plasmamembrane 細胞質 アクアポリン Mesophyll condctance: 葉緑体 CO2 permeability via AQP Chloroplast RuBisCO activity 細胞壁 CO2 transport activity using oocyte External CO2/H2CO3濃度 PIP cRNA Oocyte(卵母細胞) CA Micropipette Carbonic-anhydrase (CA) CA Micro pH electrode (pH電極) Aquaporin Voltage electrode CO2 CA - CO2 → HCO3 + H+ (pH変化検出) (PCP 55: 251, 2014) Salinity stress Drought/osmotic stress Ionic stress Osmotic stress (K+ deficiency/excess Na+ influx) Aquaporin Na+ toxicity Inhibitions of: photosynthesis protein synthesis enzyme activity <Signal transduction> Dehydration Inhibitions of: water uptake cell elongation leaf development (Cell death) Ion homeostasis Na+ extrusion/compartmentation/ K+ reabsorption Osmotic adjustment Accumulations of ions/solutes/organic compounds Recovery/Adaptation A schematic summary of the stresses that plants suffer and resultant responses of plants to detrimental effects for survival under high salinity. 適合溶質(compatible solute) → • 浸透圧を上げる (osmotic) • シャペロン活性 (chaperon) • スカベンジャー活性 (scavenger) 細胞質に蓄積される特殊な有機物質 (special organics in the cytosol) ベタイン(betain):本来はアミノ酸のアミノ基 に3つのメチル基が付いた化合物の総称。 H3N+- → (CH3)3N+- もっとも存在量の多いグリシンベタイン(= トリメチルグリシン)を、単にベタインと呼ぶ ことも多い。 タバコ葉の例 (プロリン蓄積) Proline accumulation in tobacco グリシンベタインの合成系 塩ストレス誘導性 Salt-stress inducible 左: 150 mM NaCl 右: 150 mM NaCl + 5mM betaine aldelyde (external effective) 塩ストレス環境とイオン輸送系 その1(理論的側面と分子機構) Salt stress and ion transport #1 (theory and molecular aspect) 細胞の構造と無機イオン輸送の関係 (Inorganic) Ion transport and cell structure Nuc Vacuole Exclude Isolation Ion Selection ATP Ion(low concentration) Accumulation Tolerant/sensitive determinants and transport system • Tolerant?Sensitive? Elements (toxic materials) 標的 Target Detoxification Compartmentation Cell/Individuals Tolerant mechanisms: compartmentation, no absorption, exclusion, to be insensitive •Sensitive(感受性): Originally no tolerant mechanism Inactivation of tolerant mechanism → Disturbance in metabolism and others (Injory mechanism) 輸送の基本 ・・・ 濃度勾配(濃度差) Movement ・・・ Gradient (Concentration) 「電気化学ポテンシャル」(electrochemical potential)とは 「濃度差と電位差の両方を考慮したもの」 (including both gradient of concentration and electric field) + + + + + + - - -(minus charge) --- + + + + + + + + + 10倍の濃度差と、59mVの電位差がつりあう Balance between 10-hold concentration gradient and 59 mV 電気化学ポテンシャル(の正式) Electrochemical potential (formula) 標準状態の化学ポテンシャル (standard chemical potential) μ* 気体定数 (Gas Constant) R 絶対温度 (Abs. Temp.) T 活量 (activity) a 粒子のイオン価 (charge No.) z ファラデー定数 (Faraday Const.) F 電位 (electric potential) φ 平衡電位 (Reversal (Equivalent) potential) Em or Erev ネルンストの式: Nernst equation 膜内外で一価(下図の場合K+)が平衡しているときは・・・ [K ]in RT [M ]in 59 log (mV ) Em ln zF [M ]out [K ]out 外側基準 (outer is zero standard) K+ K + K+ K + K+ K+ K+ K+ K+ K+ K+ (In case of K+) ポンプ (Pump) エネルギーを直接使って、電気化学ポテンシャ ル勾配に逆らって、物質を輸送する (Against electrochemical gradient, using energy) H+ H+ H+ H+ H+ ATP ADP + Pi H+ Example: H+ -ATPase 輸送速度は毎秒102個 (102 molecules per sec) トランスポーター (Transporter) ある物質X(たいていH+)の電気化学ポテン シャル勾配を利用して、目的の物質Yを濃度勾 配に逆らって輸送する (Using electrochemical gradient of X (H+in most case), transporting Y against Y’s electrochemical gradient) Na+ H+ H+ Na+ Na+ H+ + H + Na H+ H+ Na+ Na+ Na+H+ Example: Na+-H+ -antiporter 輸送速度は毎秒103個 (103 molecules per sec) チャネル (channel) 一部のトランスポーター (Some Transporter) 目的の物質を、電気化学ポテンシャル勾配 濃度勾配にしたがって(促進的に)輸送する (Transport X according to its electrochemical gradient) + K+ K+ - - - - K K+ K+ glucose glucose - - - - K+ Example: K+ -channel 輸送速度は毎秒108個以上 (108 molecules per sec) glucose Example: Glucose transporter 輸送速度は毎秒103個 (103 molecules per sec) 細胞膜電位 (静止電位) Membrane potential (Resting potential) ⋍ K+の平衡電位 (動物も植物も) Em of K+ 細胞膜電位 = 非起電性成分 Membrane potential non-electrogenic ones (細胞内の非移動性負電荷) 動物と植物は ここが違う! Plant unique intracellular immobile negative charges + 起電性成分(起電性ポンプ) electrogenic ones (electrogenic pump) Resting potential of living cells Animal cells Plant cells Na+-K+-ATPase (electrogenic pumps) H+-ATPase 2K + H+ 3Na + out in ATP ADP+Pi -70 ~ -90 mV ATP ADP+Pi -100 ~ -200 mV Exclusion of Na+(How to low [Na+]cyt) Animal High[Na+]outが基本 Plant [Na+]out -freeが基本 Na+-K+-ATPase 2K+ 3Na+ H+ out in No Na+-K+-ATPase except sea algae (海産藻類は例外) ATP Na+ ADP+Pi For exclusion of [Na+]cyt ・・・ Na+/H+ antiporter 二次輸送システムの基本的な違い X Animal Plant Using Na+ gradient Using H+ gradient Na+ symport antiport (co-trasnport) Y X H+ Y Ion channel study using the electrophysiology Ion flux was detected as electric current (cell recording) 従来の電気生理 (classical electrophysiology) パッチクランプ (Patch Clamp) 1991年 ノーベル賞 (Single channel recording) Example of ATP-dependent cation channel open ion+ close Erev (逆転電位) ↑外向き電流 outward current ion+ ↓内向き電流 inward current Outward current ・・・ + ion efflux (外向きの流れ) または - ion influx(内向きの流れ) Erev tells flux ions and selectivility [ K ]in RT [M ]in 59 log (mV ) (1) Erev ln zF [M ]out [ K ]out RT Pk[ K ]in PNa[ Na ]in PCl[Cl ]out (2) Erev ln F Pk[ K ]out PNa[ Na ]out PCl[Cl ]in [ K ]in a[ Na ]in (3) Erev 59 log [K ]out a[ Na ]out PNa a , PCl 0 Pk (1)イオンMの平衡電位(ネルンストの式)と、MがK+の場合 (2)3つの主要イオンで電位が決まる場合のGoldmanの式 (3)Cl-の透過性が低い場合、Na+とK+の選択性αが求められる If Cl- permeabiliy (PCl) is low, selectivity between Na+ and K+ is calculated. Erev (逆転電位) PNa/PK (α)= 0.28 (淡水産車軸藻の場合) Na+はK+のチャネルを 通って細胞に入る 原形質膜 K+ out in [K+]in = 100, [K+]out = 0.1, [Na+]in = 0, [Na+]out = 100 (cyt side is “in”) Na+ Ca2+ ATP 耐塩性の高い車軸藻(汽水産)の場合、αはほとんど 0、すなわちNa+はK+のチャネル通れず、細胞に入ら ない (In blackish characae, α ≒0) カリウムチャネルの分子構造 Molecular structure of K channel 放線菌のKcsAチャネル Actinomycetes Kcs (現代科学2004年1月 号より) By Mackinonn 2003年ノーベル賞 K+ out in Na+ Na-K co-transporter Arabidopsis HKT (Science 270:1660, 1995) Na/K 共輸送 symport 「植物の膜輸送システム」 (秀潤社)より Na-K co-transporter Arabidopsis HKT (Science 270:1660, 1995) K+ out in Na+ Arabidopsis HKT X 300 mM NaCl入り培地 Na+透過に関与するのは A240とL247 別のNa輸送システム(SOS系) Salt stress sensitivity test/bending assay inversion 5-day-old plant without salt stress wild type Sensitive Mutant (SOS mutant) by Dr. Zhu salt stress for several days SOS1-mutant K+ Na+ KAT AKT HKT ・・・ SOS3 SOS2 Na+ X NHE Na+ H+ SOS1 (Na/H antiporter) SOS2: CIPK24 SOS3: CBL4 AtHKT1とSOS1の植物体内で の生理的役割
© Copyright 2024 ExpyDoc