(6月29日)分

環境応答生理学 2015
Physiology of Environmental Responses
(484208)
Class 6 (29-June, 2016)
江崎文一、且原真木(柴坂三根夫)
Ezaki, Katsuhara (Shibasaka)
植物アクアポリンの多様な発現調節と活性調節
Various expressional and activity regulation in plant aquaporins
Tissue, organ, and developmental specificity
phosphorylation
= activation = opening
Aquaporin activity depends:
protein amount (expression)
gating (phosphorylation, pH, Ca,….)
heteromerlization
intracellular trafficking
Gene-family of plant aquaporins and sub-classes.
Rice aquaporin genes
Plant Cell Physiology 46:568, 2005 (modified)
Localization
No. of genes
Rice Barley
PIP
Plasma membrane Intrinsic Protein
Plasma membrane (PM)
11
19
TIP
Tonoplast Intrinsic Protein
Tonoplast (Vacuolar membrane)
10
10
NIP
Nodulin 26-like Intrinsic Protein
Bacteroid membrane, ER, PM
10
8
SIP
Small basic Intrinsic Protein
ER membrane
2
1
局在 (Localization)
生理的意味を知るのに重要
Important to know physiological role
方法 How
部位別の遺伝子発現解析 mRNA
(RT-PCR, micro-array, in site hybridization)
部位別のタンパク質発現解析 Protein
(immuno-chemistry/-fluorescence)
Organ- and developmental-dependent expression analysis
Data from RiceXPro
Microarray
OsPIP2;1 aquaporin
Generally expressed
Microarray
Target cDNA probed with fluorescence
(in total cDNA in samples)
Array slide
Detection with fluorescence
Partial sequence complement to each gene
Hundreds gene × samples
(samples = several tissues × developmental stages)
OsTIP3;1 aquaporin
Seed specific
Relative mRNA expression level
HvTIP3;1 expresses specifically during seed maturation
(Barley) オオムギHvTIP3;1の研究データ
RNA isolation from deferent stages → quantitative RT-PCR
1800
Root
Young Leaf
Old
LeafLeaf
DAP0
0 day after pollination
DAP30
30 day after pollination (seed maturing)
1600
1400
1200
1000
800
600
400
200
0
HvTIP1;2
HvTIP2;1
HvTIP2;3
HvTIP3;1
HvTIP4;1
TIP3;1 can be involved in seed desiccation during maturation.
Germination (root emergency)
TIP1;1 and others
(old name g-TIP)
(root elongation)
TIP2;1(old name d-TIP)
PIP2;1 and other PIPs
TIP …Vacuole enlargement, cell elongation
How different TIPs?
Different expression regulation (maybe)
タンパク質の局在を調べる (protein)
How to detect the tissue distribution of protein?
Indirect immunofluorescense (間接蛍光抗体法)
Alexa 647 (red) conjugated
anti-rat IgG goat antibody
Anti-HvPIP1s rat antibody (IgG)
(common among HvPIP1s)
HvPIP1s
Alexa 488 (green) conjugated
anti-rabbit IgG goat antibody
Anti-HvPIP2;1 (or 2;2) rabbit antibody (IgG)
(specific to each molecular species)
HvPIP2s
前回既出(Previous class)
Barley root(オオムギ根)
内皮
Endodermis
表皮
Epidermis
皮層
Cortex
H2O
中心柱
Stele
<Apoplastic or Symplastic >
根毛 Root hair
PIP1 and PIP2
Co-expression
PIP1s
HvPIP2;2
Activity regulation via interaction?
Homo
2型ホモテトラマー
Hetero
(InjectionしたRNA量)
1型と2型のヘテロテトラマー
PIPs in stomata (孔辺細胞のPIP)
H2O
H2O
気孔(stomata)
孔辺細胞
(guard cell)
AtPIP2;2, 2;3, 2;5, 2;8
Which aquaporins
function in guard
cells and stomatal
movement?
環境応答性 (Response to the environments)
2つの研究例 (2 examples)
その1 (No.1)
Light
光環境と根のPIPアクアポリン
Stomatal opening
Rice PIPs in roots
Humid (RH=90%)
OsPIP2;1
10
OsPIP2;5
8
6
4
2
0
-11
8
0
2
4
6
(x 106 copies / 1μg total RNA)
12
mRNA amounts
(x 106 copies / 1μg total RNA)
mRNA amounts
Dry (RH=40~50%)
12
Transpiration ↑
OsPIP2;1
10
OsPIP2;5
Need much water-uptake
8
6
PIP expression in roots ↑
4
2
0
-11
8
0
2
4
6
light , but evaporation-dependence
実は蒸散要求(湿度)に応答
(hormonal regulation ?)
環境応答性 (Response to the environments)
2つの研究例 (2 examples)
冠水適応に関与する浮イネのOsTIPs
(OsTIPs in Deepwater rice)
Water
celle
Relative protein amount
2.0
OsTIP1:1
1.5
1.0
0.5
0
2.0
OsTIP2;2
1.5
1.0
0.5
0
N H A N H A
vacuole
1 day
node
internode
node
3 days
Submergence
N:non 無冠水
H:Half 半冠水
A:all 全冠水
Submergence (冠水)
TIP expression ↑
Vacuolar elongation
Cell elongation
Internode elongation
(節間伸長)
ほかのTIP(液胞型)は・・・・
ナシ果実の肥大 (pear fruit ripping)
初期 early stage
Cell division
中期~後期 mid to late stages
Cell elongation with water absorption
TIP aquaporin・・・expression ↑
PIP aquaporin・・・constant expression
activation with phosphorylation
intracellular
trafficking
Trafficking of Plant Plasma
Membrane Aquaporins: Multiple
Regulation Levels and Complex
Sorting Signals
Chevalier and Chaumont (2015)
PCP 56 819
Standard sol.
Early Effects of Salinity on
GFP-LTP
Water Transport in
Arabidopsis Roots.
Molecular and Cellular
Features of Aquaporin
PIP1;1-GFP
Expression. Boursiac et al.
Plant Physiology (2005)
139:790
PIP2;1-GFP
Stimulus-induced downregulation of root
water transport involves reactive oxygen
species-activated cell signalling and plasma
membrane intrinsic protein internalization.
Boursiac et al. The Plant Journal (2008) 56,
207–218
100 mM NaCl
45 min
120 min
原形質膜マーカータンパク
Marker protein for PM
Internal
compartment
Dephosphorylation and internalization (cellular trafficking)
function to reduce root water conductance (Lpr) during
the initial phase of osmotic stress
Salt/osmotic stress
Aquaporin
P
Inactive
Aquaporin
P
Active
Aquaporin
P
塩ストレス下での根の水透過性制御
(100 mM or 200 mM NaCl 1時間 )
Lpr reduction (透過性下方制御)
Less dehydration (脱水抑制)
Tolerance (耐性)
根
の
水
透
過
性
LPr [10-6 m s-1 MPa-1]
Inactive
1
K305
耐塩性強
(salt tolerance)
0.5
0
0
100 200
NaCl [mM]
I743
耐塩性弱
(salt sensitive)
Substrates (輸送基質):
water
Glycerol
B(OH)3
Si(OH)4
As(OH)3
NH3
Lactate
CO2
H2O2
Low molecular weight, neutral
過酸化水素 H2O2
ケイ素 Si
Oocyte実験系
DSkn7 yeast assay
Aquaporins
transporting H2O2
H2O2
●
○
Lsi1(=OsNIP2;1)-injected
water-injected
ROS removal system
Lethal
Ma et al. (2006)
Si analog
68Ge (RI) was
used for uptake
experiments
Skn7
Toxic Assay
0 mM H2O2
0.25 mM H2O2
HvPIP2;4
HvPIP2;3
HvPIP2;5
HvPIP2;2
HvTIP2;2
HvPIP2;1
0.5 mM H2O2
0.75 mM H2O2
pYES2
(Vector)
HvPIP2;5 and HvTIP2;2
Are H2O2-transporting
Aquaporins
光合成の3つの律速段階とCO2透過性アクアポリンの関係
(photosynthesis and CO2-permeablr aquaporins)
大気
Air
CO 固定の律速段階
2
気孔の透過
Stomatal conductance
Stomata
気孔
CO2
細胞間隙
Intercellular space
炭酸固定酵素の効率
Cell
wall
葉肉細胞 mesophyll cells
原形質膜 Plasmamembrane
細胞質
アクアポリン Mesophyll condctance:
葉緑体
CO2 permeability via AQP
Chloroplast
RuBisCO activity
細胞壁
CO2 transport activity
using oocyte
External CO2/H2CO3濃度
PIP cRNA
Oocyte(卵母細胞)
CA
Micropipette
Carbonic-anhydrase
(CA)
CA
Micro pH electrode
(pH電極)
Aquaporin
Voltage
electrode
CO2
CA
-
CO2 → HCO3 +
H+
(pH変化検出)
(PCP 55: 251, 2014)
塩ストレス環境とイオン輸送系
その1(理論的側面と分子機構)
Salt stress and ion transport #1
(theory and molecular aspect)
塩ストレス環境
Salt stress environment
• Arid and semi-arid area <dry land>
(high evaporation)
• Coastal area (sea water)
• Underground salt
細胞の構造と無機イオン輸送の関係
(Inorganic) Ion transport and cell structure
Nuc
Vacuole
Exclude
Isolation
Ion
Selection
ATP
Ion(low concentration)
Accumulation
Tolerant/sensitive determinants and transport system
• Tolerant?Sensitive?
Elements
(toxic materials)
標的
Target
Detoxification
Compartmentation
Cell/Individuals
Tolerant mechanisms: compartmentation, no absorption,
exclusion, to be insensitive
•Sensitive(感受性): Originally no tolerant mechanism
Inactivation of tolerant mechanism
→ Disturbance in metabolism and others
(Injory mechanism)
輸送の基本 ・・・ 濃度勾配(濃度差)
Movement ・・・ Gradient (Concentration)
「電気化学ポテンシャル」(electrochemical potential)とは
「濃度差と電位差の両方を考慮したもの」
(including both gradient of concentration and electric field)
+
+
+
+
+
+
- - -(minus charge)
---
+
+
+
+
+
+
+
+
+
10倍の濃度差と、59mVの電位差がつりあう
Balance between 10-hold concentration gradient and 59 mV
電気化学ポテンシャル(の正式)
Electrochemical potential (formula)
標準状態の化学ポテンシャル (standard chemical potential) μ*
気体定数 (Gas Constant) R 絶対温度 (Abs. Temp.) T 活量 (activity) a
粒子のイオン価 (charge No.) z ファラデー定数 (Faraday Const.) F
電位 (electric potential) φ
平衡電位 (Reversal (Equivalent) potential) Em or Erev
ネルンストの式: Nernst equation
膜内外で一価(下図の場合K+)が平衡しているときは・・・
 [ K  ]in 
 RT  [ M ]in 
  59 log    (mV )
Em 
ln 
zF
 [ M ]out 
 [ K ]out 
外側基準
(outer is zero standard)
K+ K + K+ K + K+
K+ K+ K+ K+ K+
K+
(In case of K+)
ポンプ (Pump)
エネルギーを直接使って、電気化学ポテンシャ
ル勾配に逆らって、物質を輸送する
(Against electrochemical gradient, using energy)
H+
H+ H+
H+
H+
ATP
ADP + Pi
H+
Example: H+ -ATPase
輸送速度は毎秒102個
(102 molecules per sec)
トランスポーター (Transporter)
ある物質X(たいていH+)の電気化学ポテン
シャル勾配を利用して、目的の物質Yを濃度勾
配に逆らって輸送する (Using electrochemical
gradient of X (H+in most case), transporting Y
against Y’s electrochemical gradient)
Na+
H+
H+
Na+
Na+
H+
+
H
+
Na
H+
H+
Na+
Na+
Na+H+
Example: Na+-H+ -antiporter
輸送速度は毎秒103個
(103 molecules per sec)
チャネル (channel)
一部のトランスポーター (Some Transporter)
目的の物質を、電気化学ポテンシャル勾配
濃度勾配にしたがって(促進的に)輸送する
(Transport X according to its electrochemical
gradient) +
K+
K+
- - - -
K
K+
K+
glucose
glucose
- - - -
K+
Example: K+ -channel
輸送速度は毎秒108個以上
(108 molecules per sec)
glucose
Example: Glucose transporter
輸送速度は毎秒103個
(103 molecules per sec)
細胞膜電位 (静止電位)
Membrane potential (Resting potential)
⋍ K+の平衡電位
(動物も植物も)
Em of K+
細胞膜電位 = 非起電性成分
Membrane potential
non-electrogenic ones
(細胞内の非移動性負電荷)
動物と植物は
ここが違う!
Plant unique
intracellular immobile negative charges
+
起電性成分(起電性ポンプ)
electrogenic ones (electrogenic pump)
Resting potential of living cells
Animal cells
Plant cells
Na+-K+-ATPase (electrogenic pumps) H+-ATPase
2K
+
H+
3Na
+
out
in
ATP
ADP+Pi
-70 ~ -90 mV
ATP
ADP+Pi
-100 ~ -200 mV
Exclusion of Na+(How to low [Na+]cyt)
Animal
High[Na+]outが基本
Plant
[Na+]out -freeが基本
Na+-K+-ATPase
2K+
3Na+
H+
out
in
No Na+-K+-ATPase except sea algae
(海産藻類は例外)
ATP
Na+
ADP+Pi
For exclusion of [Na+]cyt ・・・ Na+/H+ antiporter
二次輸送システムの基本的な違い
X
Animal
Plant
Using Na+ gradient
Using H+ gradient
Na+
symport antiport
(co-trasnport)
Y
X
H+
Y
Ion channel study using the electrophysiology
Ion flux was detected
as electric current
(cell recording)
従来の電気生理
(classical electrophysiology)
Electric current is sum of
single-channel currents
パッチクランプ
(Patch Clamp)
1991年 ノーベル賞
Nobel prize 1991
(Single channel recording)
Example of ATP-dependent cation channel
open
ion+
close
Erev
(逆転電位)
↑外向き電流
outward current
ion+
↓内向き電流
inward current
Outward current ・・・
+ ion efflux (外向きの流れ)
または
- ion influx(内向きの流れ)
Erev tells flux ions and selectivility
(1) Erev
 [ K  ]in 
 RT  [ M ]in 
  59 log    (mV )

ln 
zF
 [ M ]out 
 [ K ]out 
 RT  Pk[ K  ]in  PNa[ Na  ]in  PCl[Cl  ]out 

(2) Erev 
ln 



F
 Pk[ K ]out  PNa[ Na ]out  PCl[Cl ]in 
 [ K  ]in   [ Na  ]in 
PNa
  
(3) Erev  59 log  
, PCl  0

Pk
 [ K ]out   [ Na ]out 
(1)イオンMの平衡電位(ネルンストの式)と、MがK+の場合
(2)3つの主要イオンで電位が決まる場合のGoldmanの式
(3)Cl-の透過性が低い場合、Na+とK+の選択性αが求められる
If Cl- permeabiliy (PCl) is low, selectivity between Na+ and K+ is calculated.
Erev
(逆転電位)
PNa/PK (α)= 0.28
(淡水産車軸藻の場合)
Na+はK+のチャネルを
通って細胞に入る
原形質膜
K+ out in
[K+]in = 100, [K+]out = 0.1,
[Na+]in = 0, [Na+]out = 100
(cyt side is “in”)
Na+
Ca2+
ATP
耐塩性の高い車軸藻(汽水産)の場合、αはほとんど
0、すなわちNa+はK+のチャネル通れず、細胞に入ら
ない (In blackish characae, α ≒0)
カリウムチャネルの分子構造
Molecular structure of K channel
放線菌のKcsAチャネル
Actinomycetes Kcs
(現代科学2004年1月
号より)
By Mackinonn
2003年ノーベル賞
Nobel Prize 2003
カリウム輸送系とナトリウムの吸収
Potassium transporter and sodium uptake
Multi-system: Physiology and transporters
オオムギ切断根のカリウム吸収速度と培地カリウム濃度の関係
複数の輸送体の寄与を示唆 Epstain, Nature 212:1324 (1966)
塩ストレスでは・・・
Under salt stress・・・
+
Na
+
K
植物(シロイヌイナズナ)のカリウム輸送系遺伝子
Na+↑
K+↓
代謝と膜電位の
攪乱
Disturbance of membrane
potential and metabolism
K+ out in
Na+
Na-K co-transporter
Arabidopsis HKT
(Science 270:1660, 1995)
Na/K 共輸送
symport
「植物の膜輸送システム」
(秀潤社)より
Na-K co-transporter Arabidopsis HKT (Science 270:1660, 1995)
Arabidopsis HKT
K+ out in
Na+
X
(normal (WT) transports Na)
Na+透過に関与するのは
A240とL247
300 mM NaCl in solid medium
Toxic assay からの復帰変異の選抜
別のNa輸送システム(SOS系)
Salt stress sensitivity test/bending assay
inversion
5-day-old plant
without salt stress
wild type
Sensitive
Mutant
(SOS mutant)
by Dr. Zhu
salt stress for several days
SOS1-mutant
K+
Na+
KAT
AKT
HKT
・・・
SOS3 SOS2
Na+
X
NHE
Na+
H+
SOS1
(Na/H antiporter)
SOS2: CIPK24
SOS3: CBL4
後述
Later
Localization and function of AtHKT and SOS1
AtHKT1とSOS1の植物体内での生理的役割
SOS1:
Na-H
antiporter
AtHKT1 : Na-transporter
(but most plant HKT is Na/K transporter)
High sodium (Na) ; Salt stress
K-deficiency and moderate Na; Substitution
代替(有益)
Rice (Koshihikari)
○
イネ rice オオムギ barley
ワタ cotton キャベツ cabbage
ホウレンソウ spinach
ビート beat ・・・
×
トウモロコシ maize
アブラナ Brasicca
ダイズ Soybean
•(「植物栄養学」第2版)
Molecular mechanism for Na
uptake in rice: One of OsHKT?
イネHKT
OsHKT2;1 expression under
K-deficiency → candidate?
(EMBO J 26:3003, 2007)
(Plant Physiology 152:341, 2010)
OsHKT2;1 : Na-transport
(not K-dependent)
OsHKT2;2:
K-dependent Na-transport
and
Na-dependent K-transport
(タバコ培養細胞に発現させて測定 in Nicotine cell)
NOTE: Difference between rice and Arabidopsis HKTs
シロイヌナズナHKTはイネと違う
Schematic summaries of Na+ influx pathways into saline roots (in case of rice)
Primary protective mechanisms mediated by Na+
transporters on important biological membranes
Rice5:11 (2012))
Apoplastic bypath flow
注意:植物種によって、イオン選択性は異なる
NOTE: Difference among plat species
塩ストレスに応答するカルシウムシグナル伝達系
Calcium signalling pathway in salt stress responses
左:酵母細胞 (left: yeast)
右:植物細胞 )rightl: plant)
(基本形に相同である, identical)
Trends in plant science, 3:411-412 (1998)より
CAM:カルモジュリンcalmodulin
CDPK:カルシウム依存PK
PK:タンパク質リン酸化酵素
PP:タンパク質脱リン酸化酵素
CNA/B:カルシュニューリンA/B
CalcineurinA/B
(CBL:CNB-like)←CAMが結合(Ca依存的)
植物のCBLシグナル系
• CBLs/CIPKs
CBL:1~9 (Calucinulin-B like proteins)
CIPK1~25 (CBL-interacting protein kinase)
2, 11-17,
19-25
7,
9
Drought-responsive
1, 4,
6,
8,18
3,
5,
10
Black: CIPKs
Blue:CBL1
Red:CBL9
Cold-responsive
Sheng Luan et al.
タンパク質相互作用を調べる
Two-hybrid法
The CBL–CIPK network in plant calcium
Signaling. Sheng Luan Trends in Plant Science
Volume 14, Issue 1, 37-42 (2008)
カルシウムの関与する他の系
カルシウム依存性蛋白質リン酸化
伸展活性化カルシウムチャネル
Mechanosensitive Ca-channel
Aquaporins and water homeostasis in plants
Kjellbom et al. TIPS, 1999, 4:308
(CDPK and Aquaporins)
どうやって細胞内Caの変動を調べるか?
How to know changes of cytoplasmic Ca2+?
Fluorescence probes (Fla-2....)
(spatial distribution)
(Time course)
「植物の生化学・分子生物学」
Aequorin:a monomeric Ca2+-binding
protein (Mr, 21,400) that emits light
upon reacting with Ca2+.
Aequorin and GFP
(Nobel prize 2008 Prof. Shimomura)
Ca2+→aequorin(Blue)→GFP(Gleen)
複合体での蛍光共鳴エネルギー移動
Energy shift between aequorin and GFP
日経サイエンス 2009年11月号より
オオムギ根で発現させた例
(GFP in barely root)
環境ストレスと細胞内シグナル伝達
Intracellular signaling against environmental stresses
受容 →
Reception
伝達
Transmission
10 SnRK2 genes
(Arabidosis)
転写因子 →
Transcriptional factor
シス因子 →
Cis-elements
ABAとDREB:
低温と乾燥に対す
るシロイヌナズナ
の応答
Cold and osmotic
response in Arabidopsis
Phenotypes of srk2d/i and srk2d/e/i mutants.
Nakashima K et al. Plant Cell Physiol 2009;50:1345-1363
SnRK2D = SnRK2.2
SnRK2E = SnRK2.6
SnRK2I = SnRK2.3
ABA
種子
休眠 (dormant)
三重変異体 (Triple mtant)
種子
休眠解除 (no dormat)
ABA response1:種子休眠 seed dormancy
ABA responce2:ストレス耐性 stress tolerance
Osmotic stress
Arabidopsis decuple mutant reveals the
importance of SnRK2 kinases in osmotic
stress responses in vivo
Fujii H et al. PNAS 2011;108:1717-1722
次回7/13課題論文
Next paper (July 13)