7th Symposium on Smart Graphics A Sketch-based Interface for Modeling Myocardial Fiber Orientation Kenshi Takayama1 Ryo Haraguchi3 1The Takeo Igarashi1,2 Kazuo Nakazawa3 University of Tokyo 2JST SORST 3National Cardiovascular Center Research Institute Introduction Background Related work Basic idea User Interface Algorithm User Experience Conclusion SG 2007 Background • 50,000 die from cardiac sudden death • Abnormal heart rhythm is its major cause • Its mechanism is not clear SG 2007 Simulation approach Mathematical model X dVi = f i (Vi ; X i ) + dt • jElucidation di j ¢(V ¡ Vi ) j 2 N (i ) dX i = Gi (Vi ; X i ) dt 1 X ±i = x i ¡ xj jN i j j 2 N • Prediction • Education (' 0) i SG 2007 3 stages of process Bottleneck Modeling Simulation Evaluation SG 2007 Various parameters Purkinje fiber network Geometry Our target Myocardial fiber orientation SG 2007 Previous method • Take 2D slices from xyz direction • Specify vectors one-by-one • Very tedious SG 2007 Related work • Vector field design on surfaces [Praun et al,00] [Zhang et al,06] [Turk,01] [Fisher et al,07] SG 2007 Our contribution • Previous work : Only vector field on surface • Ours : Design of volumetric vector field SG 2007 Basic idea • Observation – “Myocardial fibers are parallel to the surface of the heart” • Two-step algorithm Step 1: Construct tangent vector field Step 2: Construct volumetric vector field SG 2007 Introduction User Interface Stroke on the surface Stroke crossing the model Stroke on the cross-section Algorithm User Experience Conclusion SG 2007 Stroke on the surface • Specify fiber orientations on the surface SG 2007 Stroke crossing the model • Cutting • Create cross-sectional surface SG 2007 Stroke on the cross-section • Specify fiber orientations inside the model SG 2007 Demo SG 2007 Introduction User Interface Algorithm Tangent vector field Volumetric vector field Laplacian interpolation User Experience Conclusion SG 2007 Tangent vector field Sketch Laplacian interpolation Tangent vector field SG 2007 Volumetric vector field • Sketch • Tangent vector field Laplacian interpolation Volumetric vector field SG 2007 Laplacian interpolation • Minimize Laplacian 1 X X 1 = x i ¡ ± = x ¡x j (' 0) x j jNi i j j 2 Ni jN j i i (' 0) j 2 Ni neighbor i = (1; : : : ; n) i = (1; : : : ; n) • Satisfy constraint Laplacian x k i = bi x k i = bi i = (1; : : : ; m) i = (1; : : : ; m) neighbor xi SG 2007 0 1 0 x1 1 0 1 ¢¢¢ 1 ¢¢¢ b1 B C Laplacian interpolation @ AB C = @ A @ A ¢¢¢ 1 ¢¢¢ bm xn • Matrix form 0 1 0 1 1 ¡ 1 ¢¢¢ j N 1 j ¢¢¢ 0 B C B C B C0 1 B C B C x1 B C B C B C 1 B ¢¢¢ CB C B 0C ¢¢¢ ¡ 1 B jN n j CB C ' B C B C@ A B C B C B C B ¢¢¢ C xn B b1 C 1 ¢¢¢ B C B C @ A @ A bm ¢¢¢ 1 ¢¢¢ µ ¶ µ ¶ L C SG 2007 BB¢¢¢ C B C BB 0CC C ¢¢¢ ¡ 1 BB jN n j C B x C ' BB b CC C BB ¢¢¢ 1 C @ n A BB 1 CC ¢¢¢ C B@ Laplacian interpolation C B AC A @ B ¢¢¢ C B C x b n 1 ¢¢¢ B C Bb 1 C ¢¢¢ 1 ¢¢¢A @ @m A • Matrix form µ ¶ µ ¶ bm ¢¢¢ 1L ¢¢¢ 0 µ C¶ x ' µ b ¶ L 0 µ ¶x' µ ¶ C b ¡ T ¢ ¡ ¢ L 0 T T T • Least-square solution L C µ ¶ x= L C µ ¶ C b ¡ T ¢ ¡ ¢ L 0 T T T L C C x= L b T C T T (L L + C C)x = C b T T T SG 2007 C b Laplacian µ ¶ interpolation µ ¶ ¢ ¡ ¢ L 0 T T T T L • Sparse C linear system C x= L C b T T T (L L + C C)x = C b T Precomputable T x = (L L + C C) ¡ 1 T C b SG 2007 Introduction User Interface Algorithm User Experience Preliminary test Interview Conclusion SG 2007 Preliminary test • Asked a physician* to try our system • Sample model by him – In about 8 minutes • Sample simulation result * T. Ashihara, MD, PhD, Shiga University of Medical Science SG 2007 Interview • Positive comments – “We need this tool!” – “Interface is intuitive and quick.” – “This can be a breakthrough.” SG 2007 Interview • Points to be improved – “Use of MRI may be needed.” – “Cross-sectioning is not suitable for visualizing fiber orientation.” SG 2007 Introduction User Interface Algorithm User Experience Conclusion SG 2007 Conclusion • Novel method for modeling myocardial fiber orientation • 2-step scheme (our contribution) – Surface Volume • Preliminary user study with a physician SG 2007 Future work • • • • Test other interpolation algorithms More formal user test Use of MRI Peeling UI • Other applications – Fibers in wood – Particle animation [Owada et al,04] Thank you. SG 2007
© Copyright 2024 ExpyDoc