Università degli Studi di Brescia Dipartimento di Ingegneria Civile, Architettura, Territorio, Ambiente e di Matematica quaderni del dottorato 1 Ph.D. Thesis, Ph.D course in Materials for Engineering, University of Brescia Supervisors: Prof. Giovanni A. Plizzari University of Brescia Prof. Fausto Minelli University of Brescia Prof. Gustavo J. Parra-Montesinos University of Michigan Antonio Conforti Ph.D. in Materials for Engineering University of Brescia Via Branze 43, 25123 Brescia (Italy) [email protected] [email protected] Antonio Conforti Shear Behavior of Deep and Wide-Shallow Beams in Fiber Reinforced Concrete Copyright © MMXIV ARACNE editrice S.r.l. www.aracneeditrice.it [email protected] via Raffaele Garofalo, 133/A–B 00173 Roma (06) 93781065 isbn 978–88–548–7009–3 I diritti di traduzione, di memorizzazione elettronica, di riproduzione e di adattamento anche parziale, con qualsiasi mezzo, sono riservati per tutti i Paesi. Non sono assolutamente consentite le fotocopie senza il permesso scritto dell’Editore. I edizione: aprile 2014 Ai miei cari Bruno e Giuliano ACKNOWLEDGMENTS In these few lines I would like to thank and express my appreciation and gratitude to all the people who, though in different ways, significantly contributed and supported me during my PhD. Firstly, I wish to express my appreciation to Professor Giovanni Plizzari who guided me during my doctoral course and provided me with his useful and important suggestions. I would like to thank Professor Fausto Minelli as well. Thanks for helping me with important engineering advices and your continuous support. I would like also to express my special appreciation to Professor Gustavo J. Parra Montesinos for his help, advices and important suggestions. Thanks also for giving me the possibility of working at the University of Michigan. Thanks also to Professor Pedro Serna for helping me during my stay at Universitat Politècnica de València. I want to express my special thanks to all friends who supported me during my stay in the United States of America, particularly: Paolo Bianchi, Rishi Moudgil, /àm Xuân Thái, Monthian Setkit, Brad Bodensteiner. Special thanks go also to Stephen Klenke and his wonderful family Carey, Abby and Lucy. Doverosi ringraziamenti vanno anche alla Prof. Laura Depero, a tutti i tecnici di laboratorio e ai miei colleghi, tra i quali ringrazio in modo particolare l'Ing. Luca Facconi. Rendo grazie inoltre a tutti i "tesisti" che mi hanno aiutato, ovvero: Ing. Carlo Vezzoli; Ing. Francesco Bianchi; Ing. Bonomelli Mauro; Ing. Francesco Bianchi; Ing. Andrea Tinini e l'Ing. Marco Galuppi. Altresì, vorrei ringraziare i miei genitori Giovanni e Pierangela, mia sorella Giuliana e i miei nonni: Domenica, Lucia e Rocco. In particolare ringrazio tantissimo mia nonna Domenica. Ringrazio inoltre mio zio Giulio e mia zia Silvana. Grazie per essermi sempre accanto sia nei momenti belli che in quelli brutti della mia vita. Non per ultimo ringrazio anche il mio nonnino Bruno che ogni giorno mi protegge da lassù. Quisiera también dar las gracias a una magnífica familia española, la familia Cuenca Asensio. Gracias Dolores, Esteban y Natalia por preocuparos por mí y por mimarme como a un niño todas las veces que voy a España. Finalmente, un gracias de todo corazón va a ti Fani! Gracias por todo lo que has hecho por mí en estos años! Gracias por haber estado siempre a mi lado y por ser una persona tan especial. v ABSTRACT The behavior and design of reinforced concrete members subjected to shear remains an area of much concern in spite of the vast number of experiments that have been carried out to assess the shear capacity of structural members. Consequently, design codes are frequently changed and are generally becoming more stringent, so that structures designed several decades ago typically do not comply with the requirements of current codes. In fact, there are many parameters which affect the shear strength of a reinforced concrete element without transverse reinforcement: shear-span-to-effective-depth ratio, size of the element (better known as size effect), presence or absence of axial load (tensile or compression), longitudinal reinforcement ratio, concrete compressive strength, loading conditions, coarse aggregate size, shape of the cross section and the distribution of longitudinal reinforcement along the beam depth. Therefore, incorporating the influence of all these parameters in a formulation that can be applied in the design is rather complicated. The International Shear Workshop held in Salò, Italy, in 2010 provided an opportunity to discuss the new approaches and verify how they meet or diverge from one another. Moreover, it is of essential importance to recognize the effects that new models may determine in the field and for structural design and applications. In the workshop, both the shear behavior of reinforced concrete (RC) and fiber reinforced concrete (FRC) elements has been discussed. In fact, fiber reinforced concrete is now a material widely recognized by the international codes, such as in the Model Code 2010. Several reports published over the past twenty-five years confirm the effectiveness of steel fibers as shear reinforcement. Fibers are used to enhance the shear capacity of concrete or to partially or totally replace stirrups in RC structural members. This relieves reinforcement congestion at critical sections such as beam-column junctions in seismic applications. Fiber reinforcement may also significantly reduce construction time and costs, especially in areas with high labor costs, and possibly even labor shortages, since stirrups involve relatively high labor input to bend and fix in place. Fiber concrete can also be easily deployed in thin or irregularly shaped sections, such as architectural panels, where it may be very difficult to place stirrups. This is of essential significance for many secondary structural elements in which a minimum conventional reinforcement is not required for equilibrium. The present PhD thesis intends to be a further contribution to the knowledge of shear behavior of structural elements made of concrete and fiber reinforced concrete. Firstly, an extensive literature survey on the structural typology discussed in this PhD thesis, RC beams and RC wide-shallow beams will be presented. This vii literature review will also address the material fiber reinforced concrete and its possible structural applications, including its use as shear reinforcement. Afterwards, an experimental campaign on RC deep beams will be presented, where nine full-scale structural elements have been made and tested with the aim of evaluating the influence of the element size on the shear strength of fiber reinforced concrete beams. Particular attention will be placed on two specific experimental campaigns regarding the shear behavior of wide-shallow beams (WSBs) in both reinforced concrete and fiber reinforced concrete (with steel fibers or synthetic fibers), in which thirty wide-shallow beams have been tested. The main purpose of this research has been the study of the shear behavior of wide-shallow beams, as well as the role of the width on the shear strength. The experiments have been also studied numerically by means of the finite element program VecTor2 based on the Modified Compression Field Theory (MCFT) and the Disturbed Stress Field Model (DSFM). An interesting numerical study on the size effect influence on the shear strength of fiber reinforced concrete elements will be presented, discussed and compared with the experimental results obtained from the experimental campaign on deep beams. Finally, in order to summarize the main experimental tests done at the University of Brescia on reinforced concrete elements critical in shear, the last chapter will present the overall University of Brescia’s shear database. This shear database consists of ninety-one elements, in which sixty-two are beams and twenty-nine wide-shallow beams, both in RC and FRC. viii SOMMARIO Il comportamento strutturale di travi in calcestruzzo armato soggette a sollecitazioni taglianti continua ad essere materia di vivace dibattito all’interno della comunità scientifica. Conseguentemente le formulazioni sulla resistenza a taglio presenti nelle diverse normative vigenti sono in continua evoluzione e in generale tendono a divenire sempre più severe. Molti sono infatti i parametri che influenzano la resistenza a taglio di un elemento in calcestruzzo armato privo di rinforzo trasversale: la snellezza a taglio, la dimensione dell’elemento (più noto come effetto scala), la presenza o meno di azione assiale (trazione o compressione), la percentuale di armatura longitudinale tesa, la resistenza a compressione del calcestruzzo, le condizioni di carico, le dimensioni degli aggregati, la forma della sezione trasversale e la distribuzione dell’armatura longitudinale all’interno della sezione. Inserire l’influenza di tutti questi parametri in una formulazione che sia applicabile nella progettazione è pertanto alquanto complicato. Ad ottobre 2010, l’Università degli Studi di Brescia ha organizzato un Workshop internazione sulla tematica del taglio e del punzonamento (Recent Developments on Shear and Punching Shear in RC and FRC Elements), che ha costituito un’importante opportunità di discussione sul nuovo Model Code 2010 e sui più recenti sviluppi della ricerca a riguardo. Sono state inoltre analizzate le implicazioni che questo documento porterà nel mondo della progettazione, sia nelle strutture in calcestruzzo ordinario, che in quelle in calcestruzzo armato fibrorinforzato (Fiber Reinforced Concrete, FRC), materiale ampiamente documentato e riconosciuto dal nuovo Model Code 2010. Infatti, molti contributi scientifici, pubblicati negli ultimi venticinque anni, hanno sperimentalmente confermato l’efficacia delle fibre come rinforzo a taglio. Le fibre migliorano la capacità portante, la duttilità a taglio e possono sostituire, parzialmente o totalmente, l’armatura trasversale. Questo permette di ridurre la congestione dell’armatura nelle sezioni critiche, in primis nodi trave-colonna nelle applicazioni sismiche. Il rinforzo fibroso può altresì ridurre il tempo e il costo di costruzione, soprattutto in aree in cui il costo del lavoro è significativo e in tutti i casi in cui la disposizione delle staffe è onerosa se non estremamente difficoltosa (si pensino a profili di sezione complessa nella prefabbricazione o a pannelli sottili), risultando spesso non rispettosa dei valori minimi di ricoprimento richiesti. Il presente lavoro di ricerca intende costituire un ulteriore contributo sullo studio del comportamento a taglio di elementi strutturali in calcestruzzo armato e calcestruzzo fibrorinforzato. Innanzitutto, un’approfondita indagine bibliografica sulle tipologie strutturali trattate in questa tesi, ovvero travi altre e travi in spessore verrà presentata. Tale ix ricerca bibliografica tratterà anche il materiale calcestruzzo fibrorinforzato e le sue possibili applicazioni strutturali, tra cui il suo uso come rinforzo a taglio. In seguito, ampio spazio sarà dedicato alla campagna sperimentale svolta su travi alte, dove nove elementi strutturali in scala reale sono stati realizzati e testati col fine di valutare l’influenza della dimensione dell’elemento sulla resistenza a taglio di elementi in calcestruzzo fibrorinforzato. L’attenzione verrà poi posta su due specifiche campagne sperimentali riguardanti il comportamento a taglio di travi in spessore (Wide-Shallow Beams, WSBs) sia in calcestruzzo armato che in calcestruzzo fibrorinforzato (con fibre di acciaio o fibre sintetiche), nelle quali trenta travi in spessore sono state realizzate e testate sperimentalmente. I risultati sperimentali sono poi stati studiati anche numericamente grazie all’utilizzo del programma ad elementi finiti VecTor2 basato sulla Modified Compression Field Theory (MCFT) e sulla Disturbed Stress Field Model (DSFM). A seguire, uno studio numerico sull’influenza dell’effetto scala sulla resistenza a taglio di elementi in calcestruzzo fibrorinforzato verrà presentato, discusso e confrontato con i valori sperimentali ottenuti dalla campagna sperimentale sulle travi alte. Infine, con lo scopo di riassumere e sintetizzare tutte le campagne sperimentali svolte presso l’Università degli Studi di Brescia sul comportamento a taglio di elementi strutturali in calcestruzzo armato e fibrorinforzato, il database delle prove di taglio dell’Università degli Studi di Brescia verrà presentato. Tale database è composto da novantuno elementi strutturali in calcestruzzo armato e calcestruzzo armato fibrorinforzato. x RESUMEN El comportamiento estructural de vigas de hormigón armado sometidas a solicitaciones de cortante continúa siendo materia de debate en la comunidad científica. Por tanto, las formulaciones para determinar la resistencia a cortante presentes en las distintas normativas vigentes están en continua evolución y, en general, tienden a ser cada vez más severas. De hecho, muchos son los parámetros que influencian la resistencia a cortante de un elemento de hormigón armado sin armadura transversal: la esbeltez a cortante, la dimensión del elemento (más conocido como efecto tamaño), la presencia o no de axil (tracción o compresión), el porcentaje de armadura longitudinal traccionada, la resistencia a compresión del hormigón, las condiciones de carga, el tamaño máximo de árido, la forma de la sección transversal y la distribución de la armadura longitudinal en el interior de la sección. Tener en cuenta la influencia de todos estos parámetros en una formulación que sea aplicable en el proyecto es, por tanto, complicado. En octubre de 2010, la Università degli Studi di Brescia organizó un Workshop internacional tratando la temática del cortante y el punzonamiento (Recent Developments on Shear and Punching Shear in RC and FRC Elements), que constituyó una importante oportunidad de discusión sobre el nuevo Código Modelo 2010 (Model Code 2010) y sobre los más recientes y destacados resultados de investigación publicados hasta ese momento. En consecuencia, se ha analizado la influencia que este documento tendrá en el mundo del proyecto, ya sea en las estructuras de hormigón convencional como en las de hormigón reforzado con fibras (Fiber Reinforced Concrete, FRC), siendo este último material ampliamente documentado y reconocido por el Código Modelo 2010 (Model Code 2010). De hecho, muchas contribuciones científicas, publicadas en los últimos 25 años, han confirmado experimentalmente la eficacia de las fibras como refuerzo a cortante. Las fibras mejoran la capacidad portante, la ductilidad a cortante y pueden sustituir, parcial o totalmente, la armadura transversal. Esto permite reducir la congestión de armadura en las secciones críticas, en nudos viga-columna en las aplicaciones sísmicas. Además, el refuerzo con fibras puede reducir el tiempo y el coste de construcción, sobretodo en las áreas cuyo coste de mano de obra es significativo y en todos los casos donde la disposición de los estribos es costosa o extremadamente difícil (sea el caso de perfiles de sección compleja en prefabricación o paneles delgados), no respetando, a menudo, los valores mínimos de recubrimiento requeridos. El presente trabajo de investigación pretende constituir una posterior contribución al estudio del comportamiento a cortante de elementos estructurales de hormigón armado y hormigón reforzado con fibras. xi En primer lugar, se presentará un profundo estudio bibliográfico sobre las tipologías estructurales tratadas en esta tesis doctoral, es decir, vigas altas y vigas planas. Tal estudio bibliográfico tratará también el hormigón reforzado con fibras como material y sus posibles aplicaciones estructurales, así como su uso como refuerzo a cortante. Después, se dedicará buena parte de la tesis a la campaña experimental desarrollada sobre vigas altas, donde nueve elementos estructurales en escala real fueron fabricados in situ y posteriormente ensayados con el fin de evaluar la influencia de la dimensión del elemento sobre la resistencia a cortante de elementos de hormigón reforzado con fibras. Posteriormente, se prestará atención específica sobre dos campañas experimentales relativas al comportamiento a cortante de vigas planas (Wide-Shallow Beams, WSBs) tanto de hormigón armado como de hormigón reforzado con fibras (con fibras de acero o fibras sintéticas), en las cuales treinta vigas planas fueron producidas y ensayadas experimentalmente. Posteriormente, los resultados experimentales fueron analizados también numéricamente mediante el software de elementos finitos VecTor2 basado en la Modified Compression Field Theory (MCFT) y en la Disturbed Stress Field Model (DSFM). A continuación, un estudio numérico sobre la influencia del efecto tamaño sobre la resistencia a cortante de elementos de hormigón reforzado con fibras será presentado, discutido y comparado con los valores experimentales obtenidos de la campaña experimental sobre vigas altas. Finalmente, con el objetivo de resumir y sintetizar todas las campañas experimentales llevadas a cabo en la Università degli Studi di Brescia sobre el comportamiento a cortante de elementos estructurales de hormigón armado y de hormigón reforzado con fibras, se presentará la base de datos de los ensayos de cortante realizados en la Università degli Studi di Brescia. Esta base de datos está compuesta de noventa y uno elementos estructurales de hormigón armado y hormigón armado reforzado con fibras. xii CONTENTS CONTENTS 1. 2. INTRODUCTION ..................................................................................................... 3 1.1 Statement of problems and aim of the research .............................................. 3 1.2 Organization of the Thesis ................................................................................. 5 LITERATURE SURVEY ............................................................................................ 7 2.1 Fiber reinforced concrete.................................................................................... 7 2.1.1 2.1.2 2.1.3 2.1.4 2.2 Reinforced concrete deep beams in shear ...................................................... 24 2.2.1 2.2.2 2.3 3. Size effect for RC elements ......................................................................... 24 Size effect for FRC elements ....................................................................... 32 Reinforced concrete wide-shallow beams in shear ...................................... 36 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.4 Material properties ........................................................................................ 7 Fiber geometries and types ........................................................................ 12 Use of fibers as shear reinforcement ......................................................... 13 Structural application of fiber reinforced concrete ................................. 22 Introduction ................................................................................................. 36 Width-to-effective depth ratio (b/d).......................................................... 39 Size effect for wide-shallow beams ........................................................... 43 Support width .............................................................................................. 45 Transverse stirrup configuration............................................................... 48 References .......................................................................................................... 54 EXPERIMENTAL PROGRAM ON DEEP BEAMS ............................................ 63 3.1 Introduction ....................................................................................................... 63 3.2 Material and specimen geometry ................................................................... 64 3.3 Test set-up and instrumentation ..................................................................... 69 3.4 Experimental results and discussion .............................................................. 73 3.5 International code previsions for RC deep beams........................................ 85 3.6 Concluding remarks ......................................................................................... 91 3.7 Future research .................................................................................................. 92 3.8 References .......................................................................................................... 94 4. EXPERIMENTAL PROGRAM ON WIDE-SHALLOW BEAMS..................... 95 4.1 Introduction ....................................................................................................... 95 4.2 Steel fiber reinforced concrete wide-shallow beams .................................... 95 4.2.1 4.2.2 4.2.3 4.2.4 4.3 Polypropylene fiber reinforced concrete wide-shallow beams ................ 118 4.3.1 4.3.2 4.3.3 4.3.4 5. Materials ....................................................................................................... 97 Test set-up and instrumentation ............................................................. 101 Experimental results and discussion ...................................................... 103 Concluding remarks ................................................................................. 117 Geometry and material properties .......................................................... 119 Instrumentation set-up and loading modalities.................................... 128 Experimental results ................................................................................. 131 Concluding remarks ................................................................................. 145 4.4 International code previsions for RC wide-shallow beams ...................... 146 4.5 Future research ................................................................................................ 153 4.6 References ........................................................................................................ 156 NUMERICAL ANALYSES ................................................................................... 157 5.1 Introduction ..................................................................................................... 157 5.2 Deep beams: comparison between numerical and experimental results 158 5.2.1 Modeling of materials ............................................................................... 159 5.2.1.1 Concrete........................................................................................... 159 5.2.1.1.1 Tension softening for PC ...................................................... 160 5.2.1.1.2 Tension softening for FRC .................................................... 160 5.2.1.2 Longitudinal reinforcement .......................................................... 165 5.2.2 5.2.3 6. Modeling of beam geometry .................................................................... 166 Comparison of numerical and experimental results ............................ 168 5.3 Size effect for RC and FRC members by finite element analyses (FEA) .. 175 5.4 Concluding remarks ....................................................................................... 184 5.5 References ........................................................................................................ 185 SHEAR DATABASE ............................................................................................. 187 6.1 University of Brescia’s shear database ......................................................... 188 6.1.1 RC and FRC beams ................................................................................... 188 CONTENTS 6.1.2 6.2 7. RC and FRC wide-shallow beams ........................................................... 193 References ........................................................................................................ 196 CONCLUSIONS .................................................................................................... 197 Shear behavior of deep and wide-shallow beams in fiber reinforced concrete 1. INTRODUCTION 1. INTRODUCTION 1.1 Statement of problems and aim of the research The shear behavior of structural elements in reinforced concrete continues to be a topic of great interest within the international scientific community. In fact, despite the large number of scientific papers published in the last decades, there is still no consensus concerning mechanisms of shear transfer and the best way to model structural elements subjected to shear without transverse reinforcement. Therefore, it remains a need to establish design and analysis methods that provide realistic assessments of the strength, stiffness and ductility of structural elements subjected to shear loading. However, recent attempts to provide a broadly acknowledged design procedures for shear (especially with regard to members with little or no shear reinforcement) can be outlined in the final draft of fib Model Code (2012), referred to in the following as MC2010: four different approximation levels are proposed for designing shear members, incorporating statements and models well recognized such as the Modified Compression Field Theory (MCFT) (Vecchio et al., 1986). In addition, the International Shear Workshop held in Salò (Italy) (fib Bulletin 57, 2010), provided an opportunity to assess and analyze the shear behavior of reinforced concrete elements, aside from discuss the new shear approaches and verify how they meet or diverge from one another. This workshop has given new ideas for future research and to further harmonize the various shear rules of international codes, towards an unified approach to solve the long standing problem that already in 1964 Kani, one of the pioneers of modern research on shear, called "The riddle of shear failure". Moreover, in the shear workshop, both the shear behavior of reinforced concrete (RC) and fiber reinforced concrete (FRC) elements have been discussed. In fact, fiber reinforced concrete is now an innovative material widely recognized by the international codes, as well as in the Model Code 2010. Fiber reinforced concrete, as defined in the Model Code 2010, is a composite material characterized by a cement matrix and discrete fibers (discontinuous), where the matrix is made of concrete or mortar and fiber can be made of steel, polymers, carbon, glass or natural materials. Fibers can be used to improve both the behavior at Serviceability Limit State (they can reduce crack spacing and crack width) and Ultimate Limit State (they can partially or totally substitute conventional reinforcement). Research on structural application of fiber reinforced concrete have been mainly focused on the use of fibers as shear reinforcement. In fact, a significant number of reports published over the past thirty years (Cuenca, 2012; Dinh et al., 2010; Choi et al., 2007; Minelli, 2005) have been confirmed the effectiveness of steel fibers as shear 3 reinforcement since they enhance the shear capacity of concrete and allow to partially or totally replace stirrups in reinforced concrete structural members (reducing construction time and costs). This is very important also in seismic application because relieves reinforcement congestion at critical sections such as beam-column junctions. Therefore, many studies produced a number of experimental researches on the shear resistance of Steel Fiber Reinforced Concrete (SFRC) and also defined new equations for predicting the ultimate shear strength of SFRC beams. Even though these studies can be certainly considered a good advancement for understanding the shear behavior of SFRC members, many of them are characterized by tests on beams of special geometry with a limited range of crucial parameters and conditions being investigated (concrete class, fiber geometry, content and composition, size, longitudinal and transverse reinforcing ratio). In addition, most of the experiments are characterized to study only classical beams and not other kind of structural elements, as shallow-wide beams, which are widely used in residential buildings. In this respect, the present PhD thesis focuses on the study of shear behavior of structural elements made of concrete (RC) and fiber reinforced concrete (FRC). Thus, it intends to be a further contribution to the knowledge of shear behavior of structural elements. The results of three experimental campaigns on both reinforced concrete and fiber reinforced concrete beams under shear loading tested at the University of Brescia will be presented, focusing on the size effect issue and the shear behavior of wide-shallow beams (as well as the role of the width on the shear strength). With the first regard, nine full scale beams, having a height varying from 500 to 1500 mm, were tested for investigating the effect of steel fibers on size effect. Concerning the shear behavior of wide-shallow beams (WSBs), thirty shallow beams with different width, fiber content and type (steel or polypropylene fibers) and, also, minimum amount of classical shear reinforcements, were tested for evaluating the shear response of typical structural members utilized in residential buildings. Results show that a relatively low volume fraction of fibers can significantly increase shear bearing capacity and ductility. The latter determines visible deflection and prior warning of impending collapse, which is not possible in plain concrete beams (without transverse reinforcement). The size effect issue is substantially limited and it is observed that, with a fairly tough FRC composite, it is possible to completely eliminate this detrimental effect. Shallow beams do not show the typical brittle failure also without any shear reinforcement and the effect of fibers is even more prominent than in deep beams. Moreover, a number of numerical analyses on reinforced concrete deep beams by the finite element program VecTor2 based on the Modified Compression Field Theory (MCFT) and the Disturbed Stress Field Model (DSFM) will be presented. Finally, in order to summarize the main experimental tests done at the University of 4 1. INTRODUCTION Brescia on reinforced concrete elements subjected to shear, the overall University of Brescia’s shear database will be presented. This shear database consists of ninetyone elements, in which sixty-two are beams and twenty-nine wide-shallow beams, both in RC and FRC. 1.2 Organization of the Thesis The present PhD thesis is divided into seven chapters: Chapter 1 underline the statement of problem and the aim of research. Chapter 2 reports a literature review focused on the structural typology discussed in this PhD thesis, namely deep beams and wide-shallow beams. An overview of both fiber reinforced concrete material and the shear behavior of reinforced concrete elements made of this material is presented as well. Chapter 3 is devoted to an experimental campaign on fiber reinforced concrete (FRC) beams under shear loading tested at the University of Brescia, where nine full scale beams, having a height varying from 500 to 1500 mm, have been tested for investigating the effect of steel fibers on key-parameters influencing the shear response of concrete members, with special emphasis on FRC toughness and size effect. All tested members contained no conventional shear reinforcement. Chapter 4 is focused on two experimental campaigns on wide-shallow beams in reinforced concrete and fiber reinforced concrete under shear loading tested at the University of Brescia for studying the shear behavior of wide-shallow beams (as well as the influence of the width on the shear strength) and evaluate the possibility to substitute the minimum conventional transverse reinforcement required by Eurocode 2 with fibers. This section has been organized as follows: Section 4.1: Sixteen experimental tests on reinforced concrete (RC) and steel fiber reinforced concrete (SFRC) wide-shallow beams (all having depth of 250 mm) with two different widths, fiber content and, also, minimum amount of classical shear reinforcements will be presented. Section 4.2: Fourteen experimental tests on wide-shallow beams both in reinforced concrete (RC) and polypropylene fiber reinforced concrete (PFRC) characterized as having different width and depth, fiber content and, also, minimum amount of classical shear reinforcements will be discussed. 5 Chapter 5 focuses in the numerical nonlinear analyses of reinforced concrete and fiber reinforced beams by the program VecTor2 (VT2). Several numerical analyses will be presented in order to model and discuss the shear behavior of RC and FRC deep beams contained in the Chapter 3. Moreover, other specific numerical analyses will be presented in order to study the size effect influence on the shear behavior of RC and FRC elements by Finite Element Analyses (FEA). Chapter 6 reports the overall University of Brescia's shear database, consisting of ninety-one elements, both in reinforced concrete and fiber reinforced concrete. Chapter 7 summarizes the main conclusions of this PhD thesis. 6
© Copyright 2024 ExpyDoc