2008年12月6日Heavy Ion Café 三題噺 QGP,流体モデル,巨視と微視 より Shin MUROYA Dept. of C.M. Matsumoto Univ. 原子核どうしをぶつけています URASiMAによる原子核衝突シミュレーション (左)陽子・中性子の粒子数 (右)生成された中間子の粒子数 微視的モデルによる計算で十分か? 粒子の散乱描像でいいのか? •強い相互作用は相互作用が強い •massless グルーオンは長距離相関? •粒子数が多い・・・ 波動関数は重なっていないのか? •反応の途中で“粒子”???漸近場? •QGPとハドロンの間をどうする •見たいのはQGP“相” 相補的な モデル 流体モデル 定散 義乱 でを き微 る視 の的 かに 流体モデルのパラメーター 状態方程式 QGP相 u,d,s(m=0) + g 相転移(1次,その他) ハドロン相 π, p, n, K,ρΔ,, + 特殊効果 物性論的な 情報 local rest system 巨視的 微視的 平均化 完全流体モデル = エントロピー保存 K. Morita Symposium and Workshop on the Quark-Gluon Plasma and Heavy-Ion Physics at RHIC and LHC, 25 Jul 2003 Initial Conditions at t = 1.0 fm/c • Longitudinal Flow : vz = z/t (YL=h ) (Scaling ansatz : Lorentz invariant solution – Only as an initial condition!) • Transverse Flow: neglected E, nB Distributions 1.2A1/3 So tuned as to reproduce the experimental results. Space-time evolutions of Temperature and chemical Potential by Ishii and Muroya PRC (’92) Pressure distribution by Nonaka, Honda and Muroya Eur. Phys. J. C17(00) Pressure Gradient Expansion of the Fluid 横flow分布 K. Morita et al Energy Density (Left:(x,y)-space, Right:(ux,uy)-space) http://tkynt2.phys.s.u-tokyo.ac.jp/~hirano/ The above figures show, respectively, the hydrodynamic evolution of energy density in the transverse (x,y) plane (left) and the energy in flow space (right) in Au+Au collisions with a finite impact parameter (b=7.2fm) at √sNN = 200 GeV. The collision axis (z-axis) is assumed to be perpendicular to the screen. Initial transverse flow is taken to be vanishing. Please note that the dominant expansion of the system is directed to z-axis in relativistic heavy ion collisions. This is the reason why the contours of the energy density apparently move inward. 体積要素の状態変化を追跡する M. Asakawa and C. Nonaka Nucl.Phys.A774:753-756,2006. freeze-out hyper surface 流体から粒子へ 保存流 が連続になるように Cooper-Frye formula 全粒子に共通 統計分布+ 流れ local rest system 巨視的 微視的 平均化 完全流体モデル = エントロピー保存 Relativistic Hydrodynamical Equation 巨視的 where Phenomenological equations, These equations are parabolic. Are these consistent with relativity? 高エネルギー極限で Balk viscosity =0 かどうかに重要 Relativistic Causal Hydrodynamics Relativistic Causal Hydrodynamics Developed by Israel & Stewart Israel, Ann of Phys. 100, 310(76) Israel and Stewart, Ann of Phys. 118, 341(79) Extended Navier-Stokes Equation where Hyperbolic equation Higher order additional terms If you want to use causal hydro., in addition to ordinary h and k, new coefficients are needed!! If ai and bi are local quantities, how can we calculate them by using microscopic dynamics? 輸送係数を決めたい 基本的な指針 •微分方程式の係数なので流れの境界条件や解によらない •“流体モデル”なので熱力学量を通じてのみ時空性を持つ かつ,時空座標の各点ごとに決まる局所的な量である 平衡系の統計力学的な計算で Nakajima, Kubo,Yokota,Nakajima 求められるはずである Zubarev, Entropy Production Current Jm Thermo-dynamical force Xm s= p-ps Thermo-dynamical forces we may replace these terms iteratively higher derivative terms of Um and T 線形応答を使った輸送係数の計算の復習 非平衡密度行列の方法 局所平衡部分 平衡からのずれ テンソルに分解 局所平衡分布 による期待値は等方的 平衡からのずれ部分 体積項へ where 計算用メモ に をかける 体積項へ Linear response theory for non-equilibrium (Kubo et al; Zubarev) where Phenomenological equations, Linear response theory for non-equilibrium (Kubo et al; Zubarev) 微視的なサイズの相関距離・相関時間 微視的な統計力学の計算結果 If the change of thermo-dynamical force is slow, we may move it outside of the integral. If the correlation does not vanish only in the small region. local quantities 巨視的サイズの 変動 Linear response theory for non-equilibrium (Kubo et al; Zubarev) Expand thermo-dynamical forces as, Changes slowly k, h(v), h(s) New coefficients, ai, bi Local hyperbolic equation 微視的な相関距離・時間 vs 巨視的な変化の様子 流体モデルの診断 Then, we can obtain usual formulae for local heat conductivity and local viscosity Coefficients related to the heat flow relaxation of thermo-dynamical current of hadronic gas by URASiMA tau (pp) /fm tk [fm] Shear Viscosity 5 4 NB=1.0*NB0 NB=1.5*NB0 NB=2.0*NB0 3 2 1 0 80 100 120 140 160 Temperature T /MeV 180 ハドロンの相関時間 ~2-3 fm / fm ts [fm] heat conductivity 5 4 NB=1.0*NB0 NB=1.5*NB0 NB=2.0*NB0 3 2 1 0 80 100 120 140 160 Temperature T / MeV 180 QGPの相関は短いか? k, h(v), h(s) New coefficients, ai, bi Local hyperbolic equation 微視的な相関距離・時間 vs 巨視的な変化の様子 流体モデルの診断 phenomenological estimation, suppose in local rest frame if etc. Then relaxation time of the current relaxation time of the currents has already appeared in the calculation of transport coefficients as follows: Hadro-Molecular Dynamic Simulation by using Event Generator URASiMA URASiMA 1. (Ultra-Relativistic AA collision Simulator based on Multiple Scattering Algorithm) box with periodic boundary condition hadronic picture stationary state relativistic URASiMA 2. common slope parameter for the distribution function of different particles “temperature” 2-flavor low energy version Baryons, mesons and their resonances included in the present URASiMA. Strangeness and anti-baryon is neglected Equation of the state (ε- P relation) Linear Response Theory transport coefficients of hadron gas Shear Viscosity η/s heat conductivity 5 k /fm tau t (pp) 4 NB=1.0*NB0 NB=1.5*NB0 NB=2.0*NB0 3 2 1 0 80 100 120 140 160 Temperature T /MeV 180 5 / fm 3 ts 4 2 NB=1.0*NB0 NB=1.5*NB0 NB=2.0*NB0 1 0 80 100 120 140 160 Temperature T / MeV 180 <q<mpp qm>> 150 NB=1.0*NB0 NB=1.5*NB0 NB=2.0*NB0 100 50 0 80 100 120 140 Temperature T /MeV 160 180 NB=1.0*NB0 NB=1.5*NB0 NB=2.0*NB0 <p<xypippixy>> 20 10 0 120 140 Temperature 160 T/MeV 180 tau (pp) /fm tk [fm] Shear Viscosity 5 4 NB=1.0*NB0 NB=1.5*NB0 NB=2.0*NB0 3 2 1 0 80 100 120 140 160 Temperature T /MeV 180 heat conductivity / fm ts [fm] 5 4 NB=1.0*NB0 NB=1.5*NB0 NB=2.0*NB0 3 2 1 0 80 100 120 140 160 Temperature T / MeV 180 bi / (1/P) Summary • Causal Relativistic Hydrodynamics needs 8 transport coefficients. – We give “Kubo-formula” for all coefficients – are calculated by Hadro-Molecular calculation with URASiMA 2 fm How can we calculate these quantities for QGP ?
© Copyright 2025 ExpyDoc