Application of LES to CFD simulation of Diesel combustion 3604A058-2 Fumio KUWABARA Background Diesel Combustion Internal conditions Turbulent flow etc. CFD code Prediction Method Now Future ? Calculation Results Process Ignition, Combustion, products RANS LES Key aspects of turbulence • Unsteady, aperiodic motion • Turbulence is characterized by eddies or instabilities • Largest eddies are the same scale as the flow and are often anisotropic • Smaller eddies form off the larger eddies and become more isotropic at smaller scales What is Eddy? Small Eddies Large Eddies Large eddies: anisotropic Large eddies extract energy from the flow Large eddies are and carry most of the turbulent energy Directly affecting the mean fields Small eddies: isotropic Smaller eddies extract energy from larger eddies The smaller scales act mainly as a sink for the turbulent energy What is Turbulence Model? Turbulence Simulation resolved flow turbulent flow Turbulence Model not resolved flow Operation: Separate the flow field Turbulence Simulation • Direct Numerical Simulation (DNS) – Resolves the whole spectrum of scales – No modeling is required • Large Eddy Simulation (LES) – Large eddies are directly resolved – Smaller eddies are modeled • Reynolds -Averaged Numerical Simulation (RANS) – Solves “averaged” Navier-Stokes equations – The most widely used approach for industrial flows Turbulence Simulation (comparison) Reynolds -Averaged Numerical Simulation More useful Large Eddy Simulation Direct Numerical Simulation More Computational Effort & Precision Navier - Stokes Equations Navier - Stokes Equations for an incompressible fluid: ui 0 xi 2 u u ui ui 1 p i j t x j xi x j x j Unsteady Advection Pressure Viscosity RANS : What is RANS? ui ui fluctuating parts ui mean Time Decompose velocity into mean and fluctuating parts: ui ui ui 1 N ui lim ui N N n1 Reynolds -Average RANS doesn’t resolve any scales of turbulence at all ! RANS : RANS equation Reynolds -Averaged Navier -Stokes Equations ui Additional term 0 xi ui uiu j 2ui P 1 ij t x j xi x j x j x j ij uiuj Reynolds stresses Closure Problem Turbulence Model RANS : Eddy viscosity model RANS equations require closure for Reynolds stresses: 2 1 ui u j ij 2t Sij ij k , Sij 3 2 x j xi Turbulent Viscosity: t Turbulent Kinetic Energy: Mean velocity C k 2 1 k uiui 2 Dissipation Rate of Turbulent Kinetic Energy: ui ui u j x j x j xi RANS : k-εmodel Turbulent viscosity is determined from t C k 2 Transport equations for turbulent kinetic energy and dissipation rate are solved so that turbulent viscosity can be computed for RANS equations. k equation ui k t k ui uiu j xi xi k xi x j equation ui t 2 ui C2 C1 uiuj xi xi xi k x j k empirical constants C 0.09, C1 1.44, C2 1.92, k 1.0, 1.3, RANS : Result Before After LES : What is LES? This technique resolves the largest scales of turbulence and models the smaller scales. important Large eddies directly resolved turbulent flow not so important Small eddies modeled Spatial filter LES : Spatial filter • • Select a spatial filter function G Define the resolved-scale (large-eddy): f x G x x, f x dx • GridScale Find the unresolved-scale (small-eddy ): f f f All Scale SubGridScale LES : LES equation The Filtered Equations ui 0 xi Additional term ui uiu j 2ui P s ij t x j xi x j x j x j uiu j uiu j s ij Subgrid Scale (SGS)Stress SGS Closure Problem Smagorinsky model LES : Smagorinsky model LES equations require closure for SGS stresses. 1 1 ui u j ij 2 sgs Sij ij kk , Sij 3 2 x j xi SGS eddy Viscosity sgs Cs22 2Sij Sij empirical constants (theory value) Cs 0.23 need for adjustment to turbulent flow ! LES : Result Before After A Study of application of LES About Nishiwaki’s Study Table 1 Calculation conditions Cylinder bore×stroke (mm) 82.6×114.3 46 46 30 Fig. 1 Computational grid system Compression ration 8.0 Intake valve closure 146 deg.BTDC Engine Speed (rpm) 600 Wall temp. (K) const. 460 equivalent ratio φ 0.55 SGS model Cs =0.2 Fuel : isooctane Reactions:29, Chemical species20 Results Temp. RANS LES RHR Fig. 2 Fields of Temp and RHR at TDC calculated by RANS(Left) ,LES(Right) Criticism • RANSモデルでは捕らることができない自着火空 間分布を予測できる可能性がある. • モデル定数の補正が必要となるスマゴリンスキー モデルを導入しているため,モデルの変更を考え る必要がある. • LESでは,噴流の濃度・空間的変化について把握 することが重要. Future prospect on LES • エンジン内流れのサイクル平均ではない非定常流れとし て直接解析できる.そのため,ノッキングなどのサイクル 変動に起因する現象メカニズムの解明につながる. • 乱流中の噴霧,燃焼過程を普遍性のある物理モデルで 表すことができる.流れパターンなどに一貫したモデルを 使用することで,新しい機構・代替燃料の導入に際しても 適用可能. • NOX ,すすなどの微量有害物質の生成予測に対しては, 瞬時・局所の温度(濃度)分布の予測が可能. THE END
© Copyright 2024 ExpyDoc