r Vaーve 。perati。ns in Fuku。ka city Water Suppーy - ResearchGate

MemoirsoftheFacultyofEngineerlng,KyushuUniversity,Vol.64,No.1,March ZOO4
AnalysisofMotorValveOperationsinFukuokaCityWater
SupplyNetworkUsingSelf−OrganizingMap
by
HaythamAwAD*,AkiraKAWAMURA**,KenjiJINNO***andYusukeKuNO*
(ReceivedDecember17,2003)
Abstract
ThewaterdistributionregulationsystemofFukuokaCityisasystem
in which motor valves are operated by remote control while pressure
gaugesandflowmetersattachedtodistributionpipesaremonit〔red.One
ofthemain objectives ofthis systemis to regulate pressure jn allthe
networknodesbetweenloweranduppertargetvalues.
Withtheever−increaslngCOmplexityofthecity−Widedistributionpipe
network,mOtOrValveoperationstoregulatepressureandflow cameto
dependmoreandmoreontheexperienceandskillsofoperators.Forthis
reason,animprovementofvalveoperationssupportshouldbed()nebased
onvalve operation planningfor flow andpressure regulation and the
operationknowledgedatabasewhichisconstructedonthebasjsofpast
experiencein order to prevent the events of pressure regula二ion falls
outsidetherequiredtargetpressurerangeandalsotoreduceth∈effortof
OperatOrS.
Therefore in this study and with the assistance of three years of
telemetrydata,ananalysisoftheexistingvalveoperationof a certain
blockwithinthecitydistrictisperformedusingbothcorrelatiorLanalysis
andanunsupervisedclassofArtificialNeuralNetworks(ANN)named
Self−OrganizingMaps(SOM).Resultsshowthatcorrelationan;11ysishas
successfullyclassifiedtheoperationtypesofdifferentvalvesat[achedto
thestudiednetworkintothreecategorieswhileSOMisaneffi・:ienttool
in clustering the different complicated operationalpatterns(・f valves,
visualizing the huge amount of telemetry valves data,dete二ting the
patternswhichneedfutureimprovementandcouldpresentgoo・ialterna−
tivesolutionsforimprovlngfuturevalveoperationalsupport・
Keywords:Waterdistributionnetworks,MotorvalvecontrolCorrela−
tion analysis,Pressure regulation,Self−Organizilg Maps
(SOM),ArtificialNeuralNetworks(ANN)
*GraduateStudent,Institute ofEnvironmentalSystems
**Associate Professor,Institute ofEnvironmentalSystems
***Professor,InstituteofEnvironmentalSystems
64
H.AwAD,A.KAWAMURA,K.JINNO and Y.KuNO
1.Introduction
FukuokaCityispoorinwaterresourceswithnolargeriverswithinthecitydistrict.For
thisreasonithastakenvariousmeasurestowardsthecreationofa“water−SaVlngCity”,a
Cityinwhichvaluablewaterwillnotbewasted.Onesuchmeasurehasbeentheinsta11ation
Ofthewaterdistributionregulationsystem;OneOftheleadingsystemsofitstypeinJapanl).
Withthissystem,rOund−the−Clockcentralizedmonitoringofdatafrompressuregaugesand
flowmeters attachedto distributionpipesiscarried out,While onthebasis ofthis data,
PreSSureandflowwithintheentirecitydistrictisregulatedbytheremoteoperationofmotor
Valves・Byputtingthissystemintooperation,ithasbeenpossiblenotonlytosupplywater
evenlytoconsumers,butbecausewaterpressurecanberegulatedappropriatelyithasalso
beenpossibletoreduceexcesspressureandconservewater.
Thepurposeofawatersupplynetworkistoconveywatertoconsumersintherequired
quantityatappropriatepressure,Ofacceptablequality,aSeCOnOmicallyaspossible.There−
foreinordertoimprovetheexistingsystemoperationandmanagementofFukuokaCity
Water SuPply network,the Water Distribution ControICenter whichis responsible for
operation and management of the whole city water distribution network has introduced
SeVeraloperationalsupportfunctionstofurtherthereliabilityofwatersupplyanddistribu−
tion・TablelshowsasummaryoftheusedoperationalsupportfunctionsusedinFukuoka
City water supply system,their purposes and factors affecting the formulation of those
functions・By centralizing the city network controland uslng the operationalsupport
functions,thecenterseekstoachieveseveralobjectiveslikeregulatingflowbetweenwater
purificationplants,reducingmanpowerrequiredforvalveoperationsduringwatershortages,
makingearly discovery ofdistributionpipe abnormalities andrespondrapidlybyremote
COntrOl;andgatheringandanalyzinginformationtomakewaterdistributionmoreefficient2).
Theultimategoalofwatersupplyoperationsistomakeallfacilitiesfunctionworkatthe
peakofefficiency.Towardthisend,WOrkhascontinueduptopresentdaytoimproveallthe
functionsoftheWaterDistributionControICenter,butvariouskindsofproblemsarestill
encounteredduringoperations.
Asoneofthoseproblems,istheproblemsrelatedtothemotorvalveoperationswhich
TablelOperationalsupportfunctionsusedinFukuokaCitywaterdistributionnetwork.
Function
Demand
Estimation
Support
BriefPurpose
Affectedfactors
−Estimate totalwater demandof
−WeatherConditions.
theCitywatersupplynetwork.
一Timeperiodandamountofwater
−Factorsaffectingtheday(WOrking
from each purification plant.
day,holiday,Month,etC・・・)・
ーPastdataforthatparticularday.
−Suggest recommended scenario −Hydraulicconditionsofthestudied
Trouble−Shootlng
Support
incaseofpipebreakagecausedby PartOftheCitywaternetwork.
accident or Bre,SuSPenSion of
−Duration of the recommended
WaterSuPPly,PIPeCleanslngand
restoration of supply
−Carried out the additional −Changlngthestageofelectricmotor
ScheduleControl
OPerationsforvalvesaperture
Setting.
ValveOperations
Support
−Suggestedsetofelectricmotor −Requiredwaterdemand.
−Pressureregulationconstraints.
ValveopenlngS.
AnalysisofMotorValveOperationsinFukuokaCityWaterSupplyNetworkUsingSelf−OrganizingMap 65
aimtofindtheoptimalelectric openingsofdifferentmotorvalvesto achievetwotargets;
feedconsumerswiththeirrequirementsofwaterdemandandtrytoregulatewaterpressure
inthe entirewatersupplynetwork betweenupper andlowervalues.Approximately the
loweranduppertargetvaluesintheFukuokaCitywatersupplynetworkaresetto24mand
32m,reSpeCtively.Thelowerpressuretargetvalueisassignedbecauseconsumerswantto
receive water with adequate pressure while the upper target valueisintroduced for the
purpose that higher pressures cause anincrease ofthe amount ofleakedwater from the
network.Bycontrollingthedistributionofhydraulicpressuresinthenetwork,pipebreaking
couldbelessened and water couldbe conserved.
Available models that explore pressure regulation problem throughoptimalcontrol
valve settings could be dividedinto two categories.In the first type,a mathematical
statementisusedasanobjectivefunctiontobeminimized.Thismathematicalstatement
couldbepresentedintheformofnetworkpressureregulation3,4)orasthetotalamountof
leakedwaterfromthenetwork5).Themaindrawbackofuslngthiscategoryofmodelsisits
COmputationaltime.Theobjectivefunctionofal1availablemodelsofthatclassdealdirectly
withthepressureregulationproblemfrom anoptimizationpoint ofviewwhichrequireda
computationaltime depending on the water network size,the number of variables to be
optimizedandtheusedoptimizationmethodandinmostcasesrequiredanetworksimplifica−
tionmethodwhichisconsiderasanotheroptimizationproblem.
Thesecondcategoryofthepressureregulationmodelsarebasedonextractingseveral
usefuloperationalrulesbased on the previous knowledge and experience,analyzing past
recordeddataandthepresentexperienceandskillsofoperators.Existingvalveoperation
supportfunctionsappliedinFukuokaCityarefromthistype.Themainadvantageofthis
kindofmodelsthatitcouldbeusedason−1ineoperationalmodelprovidinguswiththemost
recommendedvaluesforelectricmotorvalvessetandprovidinguswiththesystemresponse
for those recommended values.
InthisstudyananalysisoftheexistingmotorvalveoperationsofBlock120fFukuoka
Citywater supplynetworkispresented.We start to classify the different operations of
electric motor valves attached to the plpeS Of Block12.This classification has been
performedusingthreeyearsofcontinuoustelemetrydatawithonehourinterval.Thenwe
tried to use an unsupervised class of ArtificialNeuralNetworks(ANN)named Self−
OrganizingMaps(SOM)inordertoexpandtheanalysisofexistingvalveoperationsusedin
this block.
ANN are already quite commonly usedin severalapplications of water resources
englneerlngaSanalternativeforconventionalcomputationalmodels.ANNusedanensem−
bleofinput−OutputpatternStOmOdelamapfromaninputlayertoanoutputlayer,Whichis
consideredinthiscaseasupervisedtypeofANN.SOMareconsideredalsoaclassofANN
buttrainedinanunsupervisedway.ThatmeansSOMdonotrequireanassociatedoutput
(target)for eachinput pattern during training.The process of SOM classify theinput
patternstodifferentgroupsbasedonmeasuringsimilaritybetweeninputpatterns,Withnoor
littleknowledgeaboutthestructure ofuseddata.
ThepurposeofusingSOMinthisstudyistotestitsabilityofclusteringthedifferent
complicatedoperationalgroups ofvalves,Visualizingthehugeamount oftelemetryvalve
dataanddetectingthegroupswhichneedfutureimprovement.Finally,uSingtheresults
obtainedfromtheSOM,WeCOuldsuggestgoodalternativesolutionsforimprovingfuture
Valve operations.
66
H.AwAD,A.KAWAMURA,K.JINNOand Y.KuNO
2.Self−OrganizingMaps(SOM)
TheSOMisrelativelyasimpleunsupervisedneuralnetworkusedforthecategorization
Ofinputpatternsintoafinitenumberofclasses.SOMconsistsoftwolayersunits,theinput
unitsare a one−dimensionalarraywhichprovides simulationto a usuallytwo−dimensional
arrayofmapspaceunits(outputunits)anda11unitsintheinputlayerarefullyconnected
With the unitsin the outputlayer(Fig.1).The neurons of the outputlayer whichis
preferabletobearrangedintwodimensionalgridsforbettervisualizationareconnectedto
adjacent neurons by a neighborhood relation dictating the structure of the map.The
arrangementoftheoutputlayerneuronsareusuallydistributedinrectangularorhexagonal
arrangement.Genera11yitispreferabletousethehexagonallattice,becauseitdoesnotfavor
horizontalandverticaldirectionsasmuchasrectangulararray6).
When aninput vector xis sent throughthe network,eaCh neuron k of the output
network,Whichisalsocalledcompetitivelayercomputesthedistancebetweentheweight
VeCtOr W andtheinputvectorx.Amongalltheoutputneurons,theso−Calledwinningunit
OrBesトMatchingUnit(BMU)isdeterminedbythesimilaritybetweentheweightvectorw
Onthatunitandtheinputvectorx.Foraninputvectorx,theBMUisdeterminedby
li∬一抄。Il=min(llJ一粧購
(1)
inwhichthesubscriptcreferstothewinningunit(BMU),Il…l‡isthedistancemeasureand
ireferstoallunitsinthecompetitionlayer,inEq.1eachunitinthetwo−dimensionaloutput
layerisidentifiedbyasinglesubscriptforsimplicity.Accordingly,aSeCOndwinningunitwill
bedeterminedwithrespecttothesecondinputvector,andsoforth.Attheendofcompetition
OnlyoneunitinthecompetitivelayerwinsincorrespondingtoonelnputVeCtOr.
FortheBMUanditsneighborhoodneurons,theweightvectors w areupdatedbythe
SOMlearningrule.
ル勅1)=(
十α(佃)(抽卜刷)
e
(2)
Whereαisthelearningrateattimet;hciSO−Calledneighborhoodfunctionthatisvalidforthe
neighborhoodNc・ThevalueofαVariesfromO.Otol.0,anditcontroIstherateoflearning
AnαOfl・Omeansitlearnsanewexampleassoonasitispresented・However,itforgets
Fig・.1StructureofSOMnetwork.
AnalysisofMotorValveOperationsinFukuokaCityWaterSupplyNetworkUsingSelf−OrganizingMap 67
allpreviousexamplesofthatclass.Similarly,anαOfO.Omeansthatthenetworkdoesno
learnatall,butclassifiesnewexamplesbasedonpreviousexperiencesonly.Theneighbor−
hoodfunctionhci(t)isatime−Variableandadecreasingfunction[hci(t)→Owhent→∞].It
isoftenrepresentedbyaGaussianfunctionasfollow
ゐ。f(オ)=e ̄
dき〟2鞘)2
(3)
where6istheneighborhoodradiusattimetanddci=llr。−rillisthedistancebetweenmap
units c andionthemapgrid.
Thetrainingisusuallyperformedintwophases.Inthefirstphase,relativelylargeinitia
learningrateandneighborhoodradiusareused.Inthesecondphasebothlearningrateand
neighborhoodradiusaresmallrightfromthebeginnlng.Thisprocedurecorrespondstofirst
tuningtheSOMapproximatelytothesamespaceastheinputdataandthenfine−tuningthe
map.
Therearetwodifferentstylesoftrainingstrategies.Insequentialtrainlngtheweights
areupdatedeachtimewhenaninputvectorispresented.Inbatchtrainingtheweightsare
Onlyupdatedafterthepresentationofallinputvectors.Inmanyapplications,batchtraining
typeis the preferred option,aSit forces the search to movein the direction of the true
gradientateachweightupdate.However,SeVeralresearcherssuggestusingthesequenti
type,aSitrequireslessstorageand“…makesthesearchpathintheweightspacestochastic…
Which allowsfor a wider exploration ofthe searchspace and,pOtentially,1eadstobetter
qualitysolutions”7・8)
Aftersometrainingsteps,theSOMwillarrangehigh−dimensionalinputdataalongit
twoqdimensionaloutputspacesuchthatsimilarinputsaremappedontoneighboringregions
Of the map which means that the similarity of theinput datais preserved within the
representationspaceoftheSOM.Usually,intheSOMapplication,inordertoensur
allvariablesofanylnputVeCtOrXreCeiveequalattentionduringthetrainingprocess,itis
importanttonormalizetheinputvectortounitlengthbeforethetrainingsteps.
To measure the ability of SOM to arrange the differentinput vectors throughits
two−dimensiongrid,uSuallytwoevaluationcriteriacouldbeappliedtomeasurethequality
OfSOM;reSOlutionandtopologypreservation.Foridentifyingandmeasuringtheresolution
OftheSOM,WeCOmputethequantizationerror6)whichistheaveragedistancebetweeneach
datavectoranditswinningunit(BMU).Thetopographicerrorwhichusedtopresentthe
accuracy of the training mapin the preserving topologyis also calculated.This error
representstheproportionofallinputdatavectorsforwhichfirstandsecondBMUsarenot
adjacent for the measurement of topology preservation.The topographic error can be
calculated as follows9):
どf=去鼻“(∬た)
(4)
whereNisthenumberofinputvectors;u(xk)isO.OifthefirstandsecondBMU’sofxkare
nexttoeachother,Otherwise u(xk)isl.0.
Inrecenttimes,aVarietyofapplicationshaveusedtheSOMinseveralwaterresources
managementproblems.TheFollowingrepresentsomesuccessfulapplicationsinthisfield
(i)Evaluation of water qualityin reservoirslO),(ii)Data division for water resources
modelsll),(iii)Optimizationofwaterapplicationundertrickleirrigation12),(iv)Riverflow
forecasting13);and(Ⅴ)Classification of flood datainto classes defined by representative
regionalcatchments14).ReviewtheliteratureshowalsothatSOMhasneverbeenusedinth
field of water distribution network which provide a rich future area of researchin the
68
H.AwAD,A.KAWAMURA,K.JINNOandY.KuNO
applicationofSOMinthisfield.
InthispaperweusedSOMtoclassifydifferentelectricmotor valve operations,eaCh
represented by one vector representing the actualrecorded set of valves setting.After
Classification we usedtwo methods to cluster the obtained SOM to severalmain groups.
First,We applied the method of unified distance matrix6)(U−matrix)whichis based on
CalculatingthedistancebetweenadjacentSOMunits.Aftercalculatedthe U−matrixitcould
bevisualizedonaspecialcolormapsizeandthenwecoulddetectthedifferentclustersusing
acolorscaledisplayonthemap.
Anothermethodthatwehaveappliedtoselectthebestnumberofgroupsiscomputing
theDavies−BouldinIndex(DBI)15).ThesmallestvalueofDBIrepresentsthebestnumberof
groupswhichindicatethebestclustering.SmallDBIvalues occurfor asolutionwithlow
Variancewithingroups(Clusters)andhighvariancebetweenclusters.Therefore,aChoice
ismadeconcerningthenumber ofclusters atwhichtheDBIattainsitsminimumvalue.
After clustering the different groups of motor valve operations with the methods of
U−matrix and DBI,We make a comparative analysis of the characteristics of different
Operationgroups and their effect on the realmeasured pressure at the different pressure
gauges.Withtheresultsobtainedwecoulddetectthewelloperatedgroupsandthegroups
thatneedfutureimprovement.
3.Case StudyandI)ata Used
ThewatersupplynetworkofFukuokacityisdividedinto21blocksandtheareaserved
byeachblocktakesintoconsiderationseparatewaterdistributionareas,differencesinland
elevation,location of rivers and railroads,aS Wellaslocaldifferencesinwater usage.
FukuokaCityisthefirstJapanese Citythathasestablished a Water DistributionControI
Centerin1981.InthissystemmotorvalvesareoperatedbyremotecontroIwhilepressure
gaugesandflowmetersattachedtodistributionpipesaremonitored.Thevaluesofflowrate
passlng eaCh flow meter,the openlng perCentage Of each motor valve and the pressure
intensityateachpressuregauge arerecordedeveryminute.AsinApri12001,thesystem
includes120water pressure gauges,68flow meters,and149electric motor valves at all
importantpointsalongthewaterdistributionpipes.
Block12asoneofthemainblocksofthecitynetworkisselectedasacasestudydue
toitslocationinthecenterofthecity.Ourcasestudy(Block12)issurroundedfromthe
northbyHakataBay,fromtheeastbytheNakaRiverandBlock9,fromthewestbythe
HiiRiverandBlock15;andfromthesouthbyanelevatedarea(Block50)andalsobyBlock
13.In Block12the originalnumber of nodes and pipes arel133and1645,reSPeCtively,
COnSidering pipes with diameters more thanlOO mm.A skeletonized figure of Block12
COntainlng57nodesand83pipesisshowninFig.2.Inthisblock,thereare20motorvalves,
7flowmeters,andllpressuregauges.Itisnoticedfromthefigurethatflowmetersare
COnneCtedtothemaininletsandoutletsandavalveisconnectedadjacenttoeachflowmeter
inordertocontroltheflowenteringorleavingtheblock(e.g.,Ml,Vl;M4,V6;…).
remainingmotorvalvesareconnectedtothemainjunctionsofthisnetwork(e.g.,V3;V5;V7;
…)tomakewaterdistributionmoreefficientandalsoplayanimportantroletochangethe
directionofwaterflowatanypipeinordertopreventtheoccurrenceofredwater.Pressure
gauges arelocated at different zonesin theimportant end flow points to maintain an
acceptablevalueofpressureandgetagoodideaaboutthewaterpressurestatusinthiszone.
Theanalyzeddatainthisstudyarebasedonhourlydataforallflowmeters,preSSure
gauges,and motor valves sincelSt April1998to31St March2001.This makes the total
AnalysisofMotorValveOperationsinFukuokaCityWaterSupplyNetworkUsingSelf−OrganizingMap 69
Fig.2 Block120ftheFukuokaCitywatersupply.
numberofdataforeachtelemeter26304(totalnumberofhoursduringthisperiod).The
analysisofmotorvalveoperationsisbasedon24799vectorsoutofthe26304vectorsbecause
thereare1505vectorsofvalvesdatasetwhicharecompletelymissing.
4.Correlation Analysis
EachmotorvalveofBlock12hasitsowntimeseriesoperationduringwhichthevalve
Openingvariesbetweenaminimumandmaximumvalues.Togetanideaaboutthedifferent
Valvesoperationweplotthebox−Whiskerplotforthedifferent20motorvalvesofBlock12
(seeFig.3).Inthisfigure,thebox−Whiskerplotshowsthemedian,upperandlowerquart
upperandlower5%ofeventsandthemaximumandlowermotorvalveopeningrecordedfor
thethreeyearsofvalvestelemetrydataset.Inthisfigure,SOmemOtOrValvesarecontinually
1 2 3 4 5 6 7 8 910111213141516171819 20
MotorvaJve number
Fig.3 Box−Whiskerplotsforthe20electricmotorvalveofBlock12.
70
H.AwAD,A.KAWAMURA,K.JINNOand Y.KuNO
00
80
0
6
8
︵U
10 12 14 16 18 20 22 24
8
96
6
84
4
72
La9time(l℃U「S)
4
60
2
48
2
36
40
24
60
乳首じ苫J¢d
0 12
Time(hours)
(C)
5
2
¢切望u¢2¢d
0
5
1
︵U
1
監豆∪申P芯d
0
2
00 64
10 12 14 16
18
2
Time(hou「S)
0
10 12 14 16 18 20 22 24 2 4 6 8 10
20 22 24
Time(hours)
Fig.4(A)statisticallyclassificationofelectricmotorvalvesusingautocorrelationfunc−
tion,(B)Valve17asanexampleoftypel,(C)Valve16asanexampleoftype2;
and(D)Valve6asanexampleoftype3.
Operated(e.g.,V2,V3andV4)whileothermotorvalvesareoperatedoccasiona11y(see
V8andV9).
Toclassifythedifferentoperationaltypesofmotorvalves,WeCOmputeaCOllectionof
COrrelationcoefficientcalculatedforvariouslagswhichisnamedautocorrelationfunction
(ACF)foreachmotorvalveofBlock12.Figure4AshowsanexampleofACFplottedfor
thetypicalthreetypesofvalveoperationsinthisnetworkwhileFigs.4B,4Cand4Dshow
abox−Whiskerplot ofthestatisticaldistributionofhourlydegreeofvalve openingfor the
Classified three types of valve operationsin Block12.The box−Whisker plot shows the
median,upper andlower quartiles and also the maximum and minimum valve opening
recordedforeachtypeofthemotorvalves.V17,V16andV6areselectedasrepresentative
Oftypel,type2andtype3respectively.
ThefollowlngSarethemaincharacteristicsofthethreetypesofvalves.
−Tbpel:SixvalvesofthisnetworkfallsinthistypeandtheyareValvesl,4,8,9,11
and17.Allthese valves are connected to the main entrances of the network and have
approximatelyconstantpercentage of openingduringthedifferenthours ofthe day(Fig.
4B).
−2bpe2:Valves13,15,16and20areclassifiedunderthistype.Thosevalveshaveonly
Onemainchangeduringdailyoperation;theyarecompletelyclosedduringnighttime(from
lO,00p.m.to6.00a.m.)andtheyhaveapproximatelyconstantpercentageofopeningdu
theremalnlnghoursoftheday.ThistypeisconnectedtotheinternalplpeSOftheblockto
reducepipe−1eakagethroughthenetwork;andalsotodecreasethepressureduringthenight
AnalysisofMotorValveOperationsinFukuokaCityWaterSupplyNetworkUsingSelf−OrganizingMap 71
timewhenthewaterdemandisatminimum(Fig.4C).
一物e3:TheremaininglOvalvesareconsideredofthistype.Thistypeofvalveshas
twomainchangesduringdailyoperationandtheyareusedtomaintainthepressurevalue
between24mand32m.Thereforethosevalvesareslightlyopenedaroundtherush−hou
(at7.00a.m.and8.00p.m.)andtheyarecompletelyclosedduringthelatenighthours(F
4D).
Theclassificationofvalvesisimportantforfutureimprovementofmotorvalveopera−
tionsaccordingtothetimehorizononwhichtheyareconsidered.Forlong−termOperation,
thevalvesof7う少elareresponsibleforsupplyingthedifferentnodesofBlock12withthe
requiredwaterdemand.Anyfutureimprovementsofthosevalvesettingsshouldbedonein
COnjunctionwithothervalves connectedtothemaininlets and outlets of adjacentblocks.
Forexample,anyChange occursinmotorvalve(Vl)willaffectdirectlythe operationo
Block15whichislocatedinthewestofthestudiedBlock12.Fromanotherpointofview
electricmotorvalve(Vl)couldbeconsideredasacommonvalvebetweenbothblocks12and
15.
Formiddle−termOperationordailymanagement,thefourvalvesof乃少e2iscompletely
affectthistimehorizonmanagementandinalesserdegreethelOvalvesof乃少e3.Those
Valvestakeintoconsiderationthemaindailychangeinconsumption.Therefore,theyare
COmpletelyclosedduringthenighttimewhenthewaterdemandatdifferentnetworknodes
isatitsminimum.Ontheotherhand,theyarepartiallyopenedduringtheremaininghours
Ofdailyoperation.Whenconsideringtheroughtuningofpressureregulationproblemboth
Valvesof7Weland2shouldbeinvoIvedinthisoperationtoregulatepressureatdifferent
networknodesbetweenthedesiredupperandlowertargetvalues.
For short−term Operation or hourly management,734)e3valves take the complete
responsibilityofregulatingthepressureatdifferentnetworknodes.Thosevalveshaveno
effect on the adjacent blocks and could be considered as fine−tuning operationalvalves.
Accordingtothetypeoftimehorizonoperation,thevalveoperationscouldbedividedinto
threeoperationterms.
5.Self・OrganlZlng MapsAnalysis
InputvectorstotheSOMareallsetsofelectricmotorvalvesforthestudiedthreeyears
Ofavailablehourlydata.ConsideringthatthesizeofSOMwillaffectdirectlytheclassifica−
tionofinputvectorstothedifferentSOMcompetitivelayerunits,thereforeasuitablesize
Of SOM shouldbe used.Different map size has been evaluated by calculating the above
mentionedtopographicandquantizationerrors.Figure5showscontourmapforbothkinds
Oferrorsusedinthisstudyforallpossibletwo−dimensionalmapsizeswhichvariesfrom2to
30neurons.
Itisclearfrombotherrorcontourmapsthatthesizeofthemaphasastrongeffecton
the distribution efficiency ofinput data vectors to the different neurons of the map.In
general,increasingthemapsizewillincreasethetopographicerrorwhichiscalculatedusing
Eq.4andrepresentedinpercentage(Fig.5A)whileinFig.5Bbringsmoreresolutioni
mapping when the quantization error decreases.Itis not recommended regarding both
figurestoselectarectangularSOMshape,thetopographicerrorincreaserapidlynearboth
horizontalandverticalaxisandthequantizationerrorcontourlineshasconcaveshapenear
thediagonallinewhichstartsfromtheorigin.
Itisimportanttoselectanoptimalmapsizethereforewedecidetoselectasquareshape
andalsoamiddlemapsize.Themapsizeselectedtopresentthedifferentclassificationof
72
H.AwAD,A.KAWAMURA,K.JINNOandY.KuNO
3
(B)QuantizationErrorContourMap
(A)Topog「aphicErrorContourMap
UO竜聖篭ゝ∪芯UO﹂コ2−O﹂むq∈﹁一Z
2
2
uO膏聖壱ゝ∪芯UO﹂コぎー〇﹂むq∈コZ
5 10 15 20 25 30
5 10 15 20 25 30
Numberofneuronsinxdirection
Numberofneuronsinxdirection
Fig.5 Contourmap oftopographic and quantizationerrors,SelectedSOM sizelOXlO
(Topographicandquantizationerrorsequa12.9541and2.3456,reSpeCtively).
motorvalveoperationsis.Atthatsizethetopographicandquantizationerrorsequa12.9541
and2.3456,reSpeCtively.That’smeanthatoutofthe24799vectorusedinthetrainingofSOM
thereisonly733vectorinwhichthefirstandsecondBMUaren’tadjacent.
After selecting a map size oflOxlO the mapis trained with the valve opening data
Subjectedto Eq.1and2.Figure6shows a representationof a11data components onthe
trainedSOM.AsshowninFig.6SOMcouldbeconsideredasagoodtooltovisualizeahigh
dimensionaldata.InFig.6,24799vectorsarepresentedwhereeachvectorcontains20moto
Valveopening.OneofthegoodadvantagesuponclassifyingdifferentinputvectorsbySOM
thatif any vector contains missing data the SOM could dealwith this vector during the
training process;eaCh corresponding weight for the missing datain the vector wi11be
neglectedtemporallyfromthecalculation.Focusingonanyunitofthemap(forexamplethe
upperleft one),WeWillsee that Vlrepresents an opening oflO%,V2correspondto an
Openingof2%uptoV20whichiscompletelyclosed.Thesameprocedurecouldbecarried
OnOtherunits.ThegooddistributionofcolorsinSOMfora11componentsoffersasuitable
representationofanyvalvesettingandalsoglVeSagOOdideaabouttheoperationruleofthis
valve and the relation with other valves.
Forallthethreetypesofvalveoperationsmentionedinthecorrelationanalysissection,
relativelyhighcrosscorrelationsexistbetweenallvalveslocatedinthesametype.For7We
2valves(V13,V15,V16andV20)theupperareainthecomponentanalysismap(Fig.6)
indicatesthatthosevalvesarecompletelyclosedwhilethelowerunitsshowthatthefour
Valvesarepartiallyopenedattheirmaximumvaluesduringthethreeyearsofoperation.
TocomparethepresentationofSOMcomponentswiththebox−Whiskerplotofmotor
Valvesshownin Fig.3.Bothpresentationsgive a goodindication about different valves
Operation.When presenting an operation ruleitis difficult for the box−Whisker plot to
efficientlyrepresentthecomplicatedelectricmotorvalveoperationslikethepresentationof
the SOM shownin Fig.6in which any unit represent an operationalrule while each
COmpOnentrepreSentthecharacteristicsofthecorrespondingmotorvalve.
AnalysisofMotorValveOperationsinFukuokaCityWaterSupplyNetworkUsingSelf−OrganizingMap
Va付e2
−12.9 Valve3
0
1
5
Va付e9
7
5
只V
5
5
7
∩︶
l門⊆⊆:L■匝仁..トl
12
5
5
つ‘
4
1
八U
て
0
0
5
5
8
6
1
7
÷÷十十
∧U
0
1
1
小+小十
5
5
7
5
5
〓.︰“∵
=V
1
4
︵U
※十小
つエ
︵U
0
1
2
∵十∴※
甲.卜︰い..、..hi
2
1
鹿
a
1
Valvell
11 VaLve4 t68 Valve5
1
34
Va付el
73
6
8
1
府逐
斗
VaNe18
9
5
7
91
8
∩︶
・i
︵U
ナ︸十十
∵
9
︹ノー
6
8
0
網凪−四一
l
Fig・.6VisualizationofallelectricmotorvalvesopeningsofBlock12calculatedinthetrainedSOM.
Fig.7 UnifieddistancematrixoftrainedSOMoftheelectricmotorvalves(U−Matrix).
ToclusterthedifferentlOOunitsofthetrainedSOMtoitsmaingroups,the U−matrix
techniquehasbeenapplied.Fig11re7showstheunifieddistancematrixofsize19×19where
SCalecolorbarontherightrepresentsthedifferencesbetweenSOMunits;eaChunitinthe
U−matrixmaprepresentsweightdifferencebetweentwoadjacentneuronsofthecompetitive
74
H.AwAD,A.KAWAMURA,K.JINNO and Y.KuNO
SOMlayer.Highestvaluerepresentsbigdifferenceandthentheboundarybetweengroups;
ifseveraladjacentunitshavesamecolors(lowestvalues)thentheyarelocatedinthesame
group.Rough1ywecoulddeterminefromthe U−matrixmapthemaingroupsofthevalves
SuppOrtfunctionbutto accuratelyestimatethenumber ofgroupswecompute theDavies−
BouldinIndex(DBI)for clusters number varies from2to20.The minimum DBIis O.61
recordedatlOclusters(Fig.8).Clustersdefinedby U−matrixandtheDBIagreedwitheach
Other.Thus,ValvesdatawereclassifiedintotengroupsmentioninLatinnumbers(I,II,III,
...,Ⅹ)whereeachgrouprepresentaunionofSOMneurons.
Figure9showstheclustersofthetrainedSOMunits.Thenumberwritteninsideeach
1
9
0∩︶O
nO
7
XむPリー∪叫P一⊃Om・Sのち田口
2
4
6
8
10
12 14
Numberofc[usters
16
18
20
Fig.8 Davies−BouldinIndex(DBI)atdifferentnumberofclustersonthetrainedSOM.
Fig.9 ClustersofthetrainedSOMunits.Theboundariesofdifferentgroupsmentionedin
LatinnumbersaresetuslngtheDBIand U−matrixmethods.Thenumberwritten
insideeachunitindicatesthetotalnumberofhitsassociatedwiththoseunits(Total
numberofhitsis24799)
AnalysisofMotorValveOperationsinFukuokaCityWaterSupplyNetworkUsingSelf−OrganizingMap 75
unitindicates the totalnumber of hits associated with those units or thelocation of BMU
eachvectorofinputdata.BoundariesofdifferentgroupsmentionedinLatinnumbersareset
using the DBIand U−matrix methods.Distribution of the24799hit varies between a
minimumvalueof628hitrecordedatgroupIIto5256hitrecordedatgroupIII.
SOMcouldbeconsideredasgoodtoolforthepresentationofhigh1ydimensionaldata.
Itpresentsthecharacteristicsofeachdatacomponentandalsopresentstherelationbetween
differentcomponents.For timeseries analysisSOM couldpresentsalsothetrajectory of
data occurrence in which the movement of events from one unit to another on the map
indicatesimportantinformationaboutthestudiedproblem.Afterthe clustering ofmotor
valveoperationstoitsmaingroups,inFig.10weplotthethreeyearshourlydatadistribution
周Group1日GroupL[ロGroupl”田GroupIV国GroupVIヨGroupVlロGroupVJI田GroupV川EaGroupIXロGroupX
1100
1000
900
800
0
0
7・
0
0
∩︶
6
0
∽l王−OL心q∈⊃Z
0
0
5
0
︵
4U
O
n
3︶
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10
Time(Hours)
2
Fig.10 Three years hourly data distribution of the trained SOM classifiedinto ten
CategOriesaccordingtothetotalnumberofhitsrecordedateachgroup.
50
嶋
40
︵∈︶巴⊃SS2d
35
30
1
2
3
4
5
6
7
8
9
10
25
Group
Fig.11Box−WhiskerplotsforpressuregaugeP3classifiedtothedifferentlOgroupsofthe
trained SOM.
76
H.AwAD,A.KAWAMURA,K.JINNOandY∴KuHO
OfthetrainedSOMintothetenclassifiedcategoriesaccordingtothetotalnumber ofhits
recordedateachgroup.The occurrenceofeventsforalltengroups arepresentedinthis
figureinwhicheachgroupislocatedat aspecifiedtimeinterval.Duringthenighttime
Operation,bothgroupsIandIIIarethedominategroupswith1299hitand5256hit,reSpeCtive−
1y.GroupIXwhichpresentabignumberofhits(4263hit)occursduringdailyoperationwith
its maximum number of hits at6.00p.m.Group Vwith3145hit occurs mainlyin the
afternoonperiodwhileGroupXpresentedwith3047eventhasitsbiggest effect afterthe
nightrush−hourat9.00p.m.andbeforethemainchangeofvalvesoperationinthenighttim
A11detaileddistributionofthedifferenttengroupsisplottedinFig.10.
Inorderto detectthewaterpressurevarianceinthedifferentgroupswithrespect to
PreSSuregaugeS,Fig.1loutlinesthepressuremonitoredinalltengroupswithrespecttoa
Selected pressure gauge(P3).The box−Whisker plot shows the median,upPer andlower
quartiles,upPerandlower5%ofeventsandalsothemaximumandlowerpressurerecorded
for each group ofthe trained SOM.From this chartitis seen that the median value of
pressureatallgroupsvariedfrom24mto32m,Whilefortheupper5%ofallevents,the
PreSSureeXCeedsthevalueof32mandthemaximumpressurevaluecouldreachthevalue
Of55m.Ontheotherhandforlessthan5%ofallevents,thepressureapproximatelyequal
totheminimumtargetvalue(24m)andtheminimumpressurevaluereached17m.When
relatively comparing the groups,both groupsland3which the majority of their events
OCCurredduringnighttimeshowanincreaseinpressurecomparedtotheremaining8groups.
In GroupIandIII,41%and50%of events exceed the permissible upper target value,
respectively.Therefore a futureimprovement of motor valve operationsin both groups
Shouldbedoneinordertopreventtherelativelyhighpercentageofeventsthatexceedthe
uppertargetvalue.
SOM could be used for improving the existing valve operation support functions by
trainingamapwiththeflowmeterreadingswhichrepresentanembeddedrepresentationof
therealwaterdemandofthenetwork.Thetrainingdataforflowmetersshouldbeselected
fromwellregulatedpressurecases.InthismapanyunitintheSOMwillpresentacasein
Whichthe pressureiswellregulated andthisunit contains also the correspondingvalves
Openingset.AftertrainingtheSOM,aSimulationstepisusedtoclassifytheunregulated
pressurecasestothedifferentSOMunitsaccordingtotheirflowmetersreading.Basedon
those classifications the appropriate electricalmotor valves setting for the wellpressure
regulationeventsareusedfortheunregulatedones.Thismethodologyoffersgoodalterna−
tivesolutionsforimprovlngfuturevalveoperationalsupportfunctions.
6.Conclusions
ThispaperpresentsananalysISOfmotorvalveoperationsinBlock120ftheFukuoka
City water distribution networks.The analysis has been performed on three years of
telemetrydatabyuslngCOrrelationanalysIS andanunSuperVised class of artificialneural
networksnamedSelf−OrganizingMaps(SOM).Correlationanalysishassuccessfullyclassi−
fiedthe different motorvalve operations of Block12into three categoriesin which each
CategOryisresponsibleofatermofoperation.Thosecategorieshavebeendefinedupontheir
effect on the studied block and the adjacent blocks.The SOM has been applied for
understanding the motor valve operationalrules.It has shown a high performancein
Visualization andabstraction ofmotorvalvedata comparlngtOtraditionalmethods.The
trained SOM efficiently classified the different operational rules and displayed all data
AnalysisofMotorValveOperationsinFukuokaCityWaterSupplyNetworkUsingSelf−OrganizingMap 77
COmPOnentSCharacteristics.Withtheassistanceoftheunifieddistancematrix(U−matrix)
and the Davies−BouldinIndex(DBI)the trained SOM has been clusteredinto ten main
groups.Thecharacteristics of eachgroup havebeen analyzedto determineits effect on
PreSSureValuesrecordedatobservednodes.Ananalysisofdifferentoperationalruleshas
beenperformedandanapplicationofSOMforimprovingfuturemotorvalveoperationhas
beensuggested.
References
l)Onizuka,Y.:Renewalofwater distributionregulationsystemleadstoimprovedoper−
ability and reliability,Proceedings of the12thIWSA−ASPAC regionalconference,
Chiangmai,Thailand,522−528,2000.
2)FukuokaCityWaterworksBureau:WaterdistributioncontroIcenter,Publicationofthe
FukuokaCityWaterworksBureau,2001.
3)Miyoka,S.andFunabashi,M.:Optimalcontrolofwaterdistributionsystembynet
flowtheory,IEEETransactionsonAutomaticControl,AC−29(4),303−311,1984.
4)Savie,D.A.andWalters,G.A.:Anevolutionprogramforoptimalpressureregulation
Waterdistributionnetworks,EngineeringOptimization,24(3),197−219,1995.
5)Jowitt,P.W.andXu,C.:Optimalvalvecontrolinwaterdistributionnetworks,Journ
OfWaterResourcesPlanningandManagement,ASCE,116(4),455−472,1990.
6)Kohonen,T.:Self−OrganizingMaps,thirdedition,Springer−Verlag,Berlin,2001.
7)Maier,H.R.,andDandy,G.C.:Neuralnetworksforthe prediction and forecastin
WaterreSOurCeSVariables:areViewofmodellingissuesandapplications,Environmental
Modelling&Software,15(1),101−124,2000.
8)Hassoun,M.H.:FundamentalsofArtificialNeuralNetworks,MIT Press,Cambri
1995.
9)Kiviluoto,K.:Topology Preservationin Self−Organizing Maps,Proceedings of the
InternationalConferenceonNeuralNetworks(ICNN’96),294−299,1996.
10)Lu,R.−SandLo,S.−L:Diagnosingreservoirwaterqualityusingself−Organizingmapsand
fuzzytheory,WaterreSearCh,36(9),2265−2274,2002.
11)Bowden,G.J.,Maier,H.R.andDandy,G.C.:Optima;divisionofdataforne
modelsinwaterresourcesapplications,WaterResourcesResearch,38(2),2002.
12)Schmitz,G.H.,Schtitze,N.andPetersohn,U.:Newstrategyforoptimizingapplic
undertrickleirrigation,JournalofIrrigationandDrainageEngineering,ASCE,128(5)
287−297,2002.
13)Abrahart,R.J.and See,L.:Comparing neuralnetwork and autoregressive m
averagetechniquesfortheprovisionofcontinuousriverflowforecastsintwocontrast−
ingcatchments,HydrologicalProcesses,14(11−12),2157−2172,2000.
14)Ha11,M.J.and Minns,A.W.:Classification of hydrologicalhomogeneous region
HydrologicalSciencesJournal,44(5),693−704,1999.
15)Davies,D.L.andBouldin,D.W.:Aclusterseparationmeasure,IEEETrans.Pa
MachineIntell.,1,224L227,1979.