eHDECAY: - an Implementation of the Higgs Effective

eHDECAY:
an Implementation of the Higgs Effective Lagrangian
into HDECAY
Margherita Ghezzi
University of Torino
in collaboration with:
R. Contino, C. Grojean, M. M¨
uhlleitner, M. Spira
arXiv:1403.3381
Workshop of LHC Higgs Cross Section Working Group, June 12th - 13th, 2014
Margherita Ghezzi (University of Torino)
eHDECAY
Geneva, Jun 12th
1 / 13
eHDECAY
http://www.itp.kit.edu/~maggie/eHDECAY/
It has been obtained from extending HDECAY 5.10
Fortran program for the calculation of the partial decay widths and branching
ratios of the Higgs boson according to the Higgs effective Lagrangian
QCD and EW higher order contributions are consistently included
Included parametrizations are:
Effective Lagrangian for a light Higgs-like scalar (non-linear σ-model)
Effective Lagrangian for a light Higgs weak doublet
(Strongly-Interacting Light Higgs Lagrangian)
Benchmark Composite Higgs Models: MCHM4 and MCHM5
Margherita Ghezzi (University of Torino)
eHDECAY
Geneva, Jun 12th
2 / 13
General Lagrangian for a light Higgs-like scalar
Assumptions:
CP is conserved
vector fields couple to conserved currents
L=
1
2
µ
∂µ h ∂ h −
2
+
+ mW Wµ W
+
+
1
2
2 2
mh h − c3
−µ
+
cWW Wµν W
1
3mh2
6
v
h
1 + 2cW
−µν
−
+
cW ∂W Wν Dµ W
v
cZZ
2
+µν
3
¯ (i) ψ (i)
m (i) ψ
ψ
h −
ψ=u,d,l
+ cW 2
h2
v2
+
1
2
2
mZ Zµ Z
+ cZ γ Zµν γ
µν
+ h.c. + cZ ∂Z Zν ∂µ Z
µν
Zµν Z
µν
+ ...
+
cγγ
2
µ
1 + cψ
h
v
+ cψ2
1 + 2cZ + cZ 2
γµν γ
µν
+ cZ ∂γ Zν ∂µ γ
+
µν
cgg
2
h
v
h2
v2
h2 h
v2 v
a
Gµν G
+ ...
+ ...
+ ...
aµν
+ ...
h
v
(unitary gauge)
Standard Model
c3 = cψ = cW = cZ = 1
cψ 2 = cW 2 = cZ 2 = 0
cWW = cZZ = cZ γ = cgg = cW ∂W = cZ ∂Z = cZ ∂γ = 0
Contino, Grojean, Moretti, Piccinini and Rattazzi, JHEP 05
Alonso, Gavela, Merlo, Rigolin and Yepes, Phys.Lett. B722
Contino, MG, Grojean, M¨
uhlleitner and Spira, JHEP 1307
Buchalla, Cat`
a and Krause, Nucl.Phys. B880
Margherita Ghezzi (University of Torino)
eHDECAY
(2010)
(2013)
(2013)
(2014)
Geneva, Jun 12th
089
330
035
552
3 / 13
Minimal Composite Higgs Models
f
v
SO(5) → SO(4) → SO(3)
1 free parameter:
(custodial symmetry)
v2
ξ ≡ 2 ∈ [0, 1]
f
f ≡
M
g∗
MCHM4: spinorial representation
cV = cψ = c3 =
1 − ξ,
cV 2 = 1 − 2ξ,
cψ2 = −
ξ
2
MCHM5: fundamental representation
cV =
1 − ξ,
cV 2 = 1 − 2ξ,
1 − 2ξ
cψ = c3 = √
,
1−ξ
cψ2 = −2ξ
Agashe, Contino and Pomarol, Nucl. Phys. B 719 (2005) 165
Contino, Da Rold and Pomarol, Phys. Rev. D 75 (2007) 055014
Margherita Ghezzi (University of Torino)
eHDECAY
Geneva, Jun 12th
4 / 13
Effective Lagrangian for a Higgs doublet
L = LSM +
c¯i Oi ≡ LSM + ∆LSILH + ∆LF1 + ∆LF2 + ∆LV + ∆L4F
i
∆LSILH =
c¯H
2v 2
+
+
+
+
∂
†
µ
c¯u
v2
†
c
yu H H q
¯L H uR +
i c¯W g
2
2mW
i c¯HW g
2
mW
c¯γ g 2
2
mW
✞
†
H H ∂µ H H
→
† i←
µ
H σ D H
µ
†
+
c¯d
v2
←
→
H†DµH
c¯T
2v 2
✝
ν
ν
i
i
(D H) σ (D H)Wµν +
†
H HBµν B
µν
Expansion at the first order in
Margherita Ghezzi (University of Torino)
+
v2
f2
c¯l
†
yd H H q
¯L HdR +
(D Wµν ) +
i
←
→
H† D µH
c¯g gS2
2
mW
†
i c¯B g
2
2mW
i c¯HB g
2
mW
a
H HGµν G
v2
−
✆
c¯6 λ
v2
†
H H
3
† ¯
yl H H L
L HlR + h.c.
→
†←
µ
H D H
µ
☎
†
ν
(∂ Bµν )
ν
(D H) (D H)Bµν
aµν
flavour alignment
1
Buchm¨
uller and Wyler, NPB 268 (1986) 621
Giudice, Grojean, Pomarol and Rattazzi, JHEP 0706 (2007) 045
Grzadkowski, Iskrzynski, Misiak and Rosiek, JHEP 1010 (2010) 085
Contino, MG, Grojean, M¨
uhlleitner and Spira, JHEP 1307 (2013) 035
eHDECAY
Geneva, Jun 12th
5 / 13
LSILH
Higgs couplings
cW
cZ
c
( = u, d, l)
c3
1
1
c¯H /2
c¯H /2
1
MCHM4
c¯T
(¯
cH /2 + c¯ )
1 + c¯6
3¯
cH /2
MCHM5
p
1
⇠
p
1
⇠
p
1
⇠
p
1
⇠
p
1
⇠
1
p
1
2⇠
⇠
p
1
⇠
1
p
1
2⇠
⇠
cgg
8 (↵s /↵2 ) c¯g
0
0
c
8 sin2 ✓W c¯
0
0
0
0
cZ
c¯HB
Margherita Ghezzi (University of Torino)
c¯HW
8 c¯ sin2 ✓W tan ✓W
eHDECAY
Geneva, Jun 12th
6 / 13
NLO corrections
Beyond the tree level:
Short-distance corrections:
RG evolution - not included in eHDECAY for the c¯i
The input values c¯i must be given at the low-energy scale µ2 = mh2
Long-distance corrections:
multiple perturbative expansion
QCD corrections:
they generally factorize with respect to the expansion in the number of fields and
derivatives
✞
✝
Multiple perturbative expansion:
Margherita Ghezzi (University of Torino)
eHDECAY
αSM
4π
,
2
E
, v
M f2
☎
✆
Geneva, Jun 12th
7 / 13
¯
A simple example: h → ψψ
General case:
ψ¯
h
Coupling rescaled by
cψ
cψ = 1 + δcψ
ψ
QCD: the same as in the SM
EW: not factorized
¯
Γ(ψψ)
NL
QCD
¯
= cψ2 ΓSM
0 (ψψ) 1 + δψ κ
Margherita Ghezzi (University of Torino)
eHDECAY
δψ =
1
0
X
ψ = quark
ψ = lepton
Geneva, Jun 12th
8 / 13
¯
A simple example: h → ψψ
SILH case (Higgs doublet close to the SM):
Perturbative expansion in
v2
f2
and
α2
4π
ψ¯
h
h
h
ψ
O
v2
f2
¯
Γ(ψψ)
SILH
ψ
O
α2
4π
¯
= ΓSM
¯H − 2¯
cψ +
0 (ψψ) 1 − c
Margherita Ghezzi (University of Torino)
ψ¯
ψ¯
ψ
O
2
Re A∗SM
ASM
0
1,ew
2
|ASM
0 |
eHDECAY
α2 v 2
4π f 2
X
1 + δψ κQCD
Geneva, Jun 12th
9 / 13
A loop-process example: h → γγ
General case:
γ
cψ
h
h
ψ
NL
=
GF α2em mh3
√
128 2π 3
q=t,b,c
cγγ
h
W
γ
γ
Γ(γγ)
γ
cW
γ
4
4
4π
NLO
cq 3Qq2 AQCD
(τq )+ cτ Qτ2 A1/2 (ττ )+cW A1 (τW )+
cγγ
1/2
3
3
αem
QCD corrections:
NLO
AQCD
(τq ) = A1/2 (τq )(1 + κQCD )
1/2
EW corrections:
not factorized and not available
Margherita Ghezzi (University of Torino)
γ
eHDECAY
Geneva, Jun 12th
2
10 / 13
A loop-process example: h → γγ
SILH case:
Γ(γγ)
SILH
=
GF α2em mh3
√
128 2π 3
2
SM∗
SM
|ASM
QCD NLO (γγ)| + 2 Re AQCD LO (γγ) Aew (γγ)
+ 2 Re ASM∗
QCD NLO (γγ) ∆A(γγ) +
SM
ASM
QCD NLO ∼ ALO 1 + O
ASM
ew ∼ O
32π sin2 θW c¯γ
αem
αS
4π
α2
4π
∆A(γγ) +
32π sin2 θW c¯γ
αem
∼O
v2
f2
γ
h
γ
h
γ
Margherita Ghezzi (University of Torino)
γ
h
W
γ
eHDECAY
γ
Geneva, Jun 12th
11 / 13
Approximated formulas
Higgs decays into vector bosons
Γ(h → W (∗) W ∗ )
Γ(h → W (∗) W ∗ )SM
Γ(h → Z (∗) Z ∗ )
Γ(h → Z (∗) Z ∗ )SM
Γ(h → Z γ)
Γ(h → Z γ)SM
1 − c¯H + 2.2 c¯W + 3.7 c¯HW ,
1 − c¯H + 2.0
2
c¯W + tan θW c¯B
1 − c¯H + 0.12 c¯t − 5 · 10
−4
2
+ 3.0
c¯HW + tan θW c¯HB
−5
c¯c − 0.003 c¯b − 9 · 10
2
+ 4.2 c¯W + 0.19 c¯HW − c¯HB + 8 c¯γ sin θW
Γ(h → γγ)
Γ(h → γγ)SM
Γ(h → gg )
Γ(h → gg )SM
c¯τ
4π
√
− 0.26 c¯γ ,
α2 αem
,
1 − c¯H + 0.54 c¯t − 0.003 c¯c − 0.007 c¯b − 0.007 c¯τ + 5.04 c¯W − 0.54 c¯γ
1 − c¯H − 2.12 c¯t + 0.024 c¯c + 0.1 c¯b + 22.2 c¯g
√
α2 ≡
Margherita Ghezzi (University of Torino)
2
2GF mW
π
4π
α2
4π
αem
,
.
2
αem ≡ αem (q = 0)
eHDECAY
Geneva, Jun 12th
12 / 13
Conclusions
We have presented eHDECAY, a numerical program for the calculation of the
Higgs branching ratios according to the Higgs effective Lagrangian.
Parametrizations included:
General non-linear effective Lagrangian
Efffective Lagrangian for a weak Higgs doublet
Minimal Composite Higgs Models MCHM4 and MCHM5
QCD corrections are included
EW corrections are included in the SILH case, according to the multiple
perturbative expansion
Enjoy eHDECAY!
Thanks for your attention!
Margherita Ghezzi (University of Torino)
eHDECAY
Geneva, Jun 12th
13 / 13