Hydroization and Equilibration in Heavy Ion Collisions ¨ Andreas Schafer (Regensburg) The problem Different approaches Our work on AdS/CFT 1/λ and 1/N corrections to holographic calculations Conclusions 1 / 40 A key question in heavy ion physics: Does one reach thermal equilibrium fast enough to really probe the quark gluon plasma ? Observable: Elliptic flow vn ∼ cos(nφ) 2 / 40 How large are the systematic errors, e.g. on the extracted η/s ? Gale et al. 1209.6330 0.2 v1 v2 v3 v4 v5 〈vn 〉 2 1/2 0.15 0.1 RHIC 200GeV, 30-40% filled: STAR prelim. open: PHENIX η/s = 0.12 0.2 0.05 〈vn2〉1/2 0 0.2 v1 v2 v3 v4 v5 2 1/2 0.15 〈vn 〉 v2 v3 v4 v5 0.15 0.1 RHIC 200GeV, 30-40% filled: STAR prelim. open: PHENIX ATLAS 10-20%, EP η/s =0.2 0.1 0.05 η/s(T) 0 0 0.05 0.5 1 pT [GeV] 1.5 2 0 0 0.5 1 pT [GeV] 1.5 2 3 / 40 How is thermalization at all possible ? Thermalization requires massive entropy production at early stages (< 1 fm/c) QCD is basically time-reversal invariant. Entropy is only produced by information loss, typically by incomplete measurements ⇒ Coarse-graining. Q1: How can entropy be produced at all before any measurement takes place ? Q2: How can it be produced so fast ? A fundamental problem relevant for many fields of physics, e.g. reheating after inflation, quantum computers, ... Heavy ion physics could offer the best chances to understand this ! 4 / 40 Different stages of entropy production in a HIC cYM & AdS/CFT hydrodynamics τ hydro pQCD+CGC τdeco 1/Q s τ therm τ hadro t 0.5−2 fm/c ?! AdS/QCD About 50% of entropy has to be produced in the thermalization phase. entropy production = information loss ⇒ requires measurement; otherwise only an entangled state 5 / 40 The full QCD problem is not tractable. Therefore, one studies various limits and approximations, hoping that in combination they will provide a consistent picture One can solve the classical Yang-Mills equations numerically: T. Kunihiro et al. Phys. Rev. D 82 (2010) 114015 [arXiv:1008.1156 [hep-ph] J. Berges et al. Phys. Rev. D 77 (2008) 034504 [arXiv:0712.3514 [hep-ph]] One can treat the weak-coupling limit J. Berges et al. Phys. Rev. D 89 (2014) 114007 [arXiv:1311.3005 [hep-ph]] α1/2 S Occupancy nHard 1 α-1 S α = α1/3 S BD SU(2) Lattice Tu SS rb (e ul la en st ce ic -2 /3 ex sca ,β po tte = ne rin 0, nt g) γ= s: 1 /3 (pla sm a in sta bil itie s) α1/7 S δS KM (p ξ0=6 ξ0=4 lasm a inst abilitie Higher anisotropy Momentum space anisotropy: ΛL/ΛT BM s) ξ0=2 BGLMV (const. anisotropy) 1 Smaller occupancy ξ0=1 n0=1/4 n0=1 One can solve the strong coupling limit and AdS/CFT – this talk 6 / 40 The big picture phase Q1:mechanism Q2: τtherm ∆S 1.) pQCD mixing 0.3 fm/c 20-40 % 2.) cYM Husimi trafo 2 fm/c 40-50% 2.) AdS/CFT Bekenstein 0.1 ⇒ 2 fm/c 40-50 % 3.) hydrodynamics viscosity 1-2 fm/c 10-20 % 4.) hadron gas fragmentation 1 fm/c 10 % Interpretation: “hydroization” time <<1 fm/c, equilibration time 2 fm/c 7 / 40 The basic idea of cYM and AdS/CFT is the same: not retrievable information can be regarded as lost information cYM: Coarse graining in non-linear mechanics p p p ∆p ∆x x x x Husimi-Transformation & Wehrl entropy: No measurement can beat the uncertainty principle. 8 / 40 BH formation and annihilation is probably adiabatic, e.g. BH formation at LHC ?!? T=0 S=0 TH = 0 S BH = 0 TH = 0 S BH = 0 Polchinski et al.: Unmeasurable information is lost information, Hawking radiation is not “really” a thermal but an entangled state the time for thermalization is the time for BH formation. Bekenstein entropy SB = kB A/(4`2P ) 9 / 40 The ideas behind AdS/CFT nice review: Ramallo 1310.4319 renormalization flow of a SU(N) vertex function on ever coarser lattices V (x, a) → V (x, 2a) → V (x, 4a) → ... u ∂ g(u) ∂ log u = a, 2a, 4a = β(u) J|UV = Φ|∂ UV u ∂ z IR 10 / 40 geometric interpretation of new coordinate called z ds2 = Ω2 (z) [dt 2 − dx i dx i − dz 2 ] The properties of the renormalization flow is only simple for conformal theories. z → λz L Ω(z) = → λ−1 Ω(z) z L2 ds2 = [dt 2 − dx i dx i − dz 2 ] z2 SU(N), N = 4 is conformal 8 quantum corrections ∼ `LPl = string theory formulation AdS5 × π4 2N 2 S5; AdS − metric are small for large N. √ RS4 /(α0 )2 = 4π λN. 11 / 40 planar amplitude string amplitude Thus the crucial questions are: is N = 3 already large ? answer: dedicated lattice calculations Is QCD an approximately conformal theory ? answer: literature, e.g., Braun, Korchemsky and Muller, ¨ hep-ph/0306057 conformal perturbation theory e.g. hep-ph/0605237 NLO→NNLO for GPDs The answer to both questions is: YES 12 / 40 Pressure 1 0.9 4 p / T , normalized to the SB limit 0.8 0.7 0.6 0.5 SU(3) SU(4) SU(5) SU(6) SU(8) improved holographic QCD model 0.4 0.3 0.2 0.1 0 0.5 1 1.5 2 T / Tc 2.5 3 3.5 SU(N) pure gauge theory in 1+3 dimensions M. Panero, 0907.3719 13 / 40 Energy density Entropy density 0.4 0.6 0.55 0.35 0.5 0.3 0.45 s/[T (N -1)] 0.35 2 2 ε/[T (N -1)] 0.4 0.25 0.3 2 3 0.2 0.15 SU(2) SU(3) SU(4) SU(5) SU(6) holographic model, for α = 3 / 2 0.1 0.05 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 T / Tc 5 5.5 6 6.5 7 0.25 SU(2) SU(3) SU(4) SU(5) SU(6) holographic model, for α = 3 / 2 0.2 0.15 0.1 0.05 7.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 T / Tc 5 5.5 6 6.5 7 7.5 energy and entropy in 1+2 dimensions M. Caselle et. al, 1111.0580 14 / 40 5 m / √σ 4 3 SU(∞) SU(2) SU(3) SU(4) SU(5) SU(6) SU(7) SU(17) 2 1 0 ^ Fπ ^ fρ ρ a0 a1 b1 π∗ ρ∗ a*0 a*1 b*1 T = 0 meson spectrum and decay constants G. Bali et. al, 1304.4437 15 / 40 Equilibration times from AdS/CFT Idea: Probe black brane formation with a string or membrane. PRL: 1012.4753 PRD: 1103.2683 fire ball probing string falling shell event horizon 16 / 40 The change in geodetic length is sensitive to equal time correlators of high dimension gluonic operators. hO(tshell , x)O(tshell , 0)ishell ≈ e−∆δL(tshell ,x) hO(tshell , x)O(tshell , 0)iAdS ∆L 0.020 0.015 0.010 0.005 4 6 8 10 x0 17 / 40 We solved analytically and numerically different cases: AdS3 ∼ CFT (1 + 1), AdS4 ∼ CFT (1 + 2), AdS5 ∼ CFT (1 + 3) and analyzed how the length of the geodesic/the area of the surface approaches its thermal value, as a function of ` and t0 . 18 / 40 -0.3 0. ~ -0.1 -0.2 ~ -0.2 ~ ~ -0.2 -0.3 1. 2. t0 0. ∆L - ∆L thermal -0.1 ~ ~ -0.1 0. ∆L - ∆L thermal 0. ∆L - ∆L thermal 0. -0.3 1. 2. t0 0. 1. 2. t0 δ L˜ − δ L˜thermal (L˜ ≡ L/`) for d = 2, 3, 4 (left,right, middle) and ` = 1, 2, 3, 4 (top to bottom curve). 19 / 40 0. 0. ~ -0.02 -0.03 ~ -0.06 ∆V - ∆V thermal ~ ~ ~ ~ -0.03 0. ∆A - ∆Athermal ∆A - ∆Athermal 0. -0.04 1. 2. t0 -0.06 0. 1. 2. t0 0. 1. 2. t0 ˜ − δV ˜thermal δ A˜ − δ A˜thermal (A˜ ≡ A/πR 2 and δ V ˜ ≡ V /(4 πR 3 /3) as a function of t0 for radii R = 0.5, 1, 1.5, 2 (V (top to bottom) in d = 3 (left panel) and d = 4 (middle and right panel) CFT 20 / 40 Observations Thermalization is approached as fast as compatible with causality. Note: speed of light (gluons), not speed of sound (density fluctuations) For heavy ion collisions this implies τ ∼ 1/(2Qs ) ∼ 0.1fm/c Clear contradiction to YM result ? Short distances thermalize first, top-down rather than bottom-up thermalization Unavoidable in the AdS dual theory. A fundamental difference between strong and weak coupling ??? 21 / 40 One has to include realistic fluctuations, requiring a 1+4 dimensional numerical code (Chesler & van der Schee & Yaffe & AS) 0.7 0.6 DΕΕ 0.5 0.4 0.3 0.2 0.1 0.0 0.2 0.4 0.6 0.8 z HfmL B. Schenke, Tribedy, Venugopalan 1206.6805 B.M. & A.S. 1111.3347 energy density at 0.2 fm/c 22 / 40 PRL 1307.1487; JHEP 1307.7086 We included fluctuations in one spatial dimension of a scalar field on a 1+2 dimensional boundary and calculated in AdS4 using perturbative expansions. 2 2 2 2 φ(t, x) = 1 + e−µ x e−(t−ν) /σ We compared with free streaming second order viscous hydrodynamics 3 1 4 (x, y ) ⇒ “local temperature” = 8πG πT 3 N shear and bulk viscosity η = 1 16πGN 4 3 πT 2 and ζ=0 23 / 40 ⇒ [Hubeny and Rangamani, shear stress 1006.3675] Γ0 (−1/3) γ 3 relaxation time τΠ = 4πT 1 + 3 + 3Γ(−1/3) “We” (i.e. primarily A. Bernamonti and F. Galli) solve D = −ut ∂t + ux ∂x ∂ hα u βi M αβ = θ θ = ∂ρ u ρ 1 σ αβ = P αρ P βσ ∂hρ uσi − Pρσ θ 2 Dσ αβ = 2(Dθ)M αβi + 2θDM αβ h 1 αβ i h αβ Παβ = ητ Dσ + σ θ + ... Π (2) 2 shear tensor From the stress tensor Π one can read of px − py 24 / 40 px-py ¶ 0.012 0.00001 0.010 t= 0.10Μ 0.008 t= 0.16Μ t= 0.22Μ -300 -200 -100 0.006 -0.00001 0.004 -0.00002 100 200 300 x t= 0.04Μ t= 0.07Μ -300 -200 -100 100 200 300 x t= 0.10Μ solid: AdS; dashed: free streaming; dotted: 2nd order hydro Conclusion: hydroization is reached long before equilibration 25 / 40 px-py 5. ´ 10-6 ¶ 0.012 0.010 t= 0.10Μ -600 -400 200 -200 400 600 x -6 -5. ´ 10 t= 0.16Μ 0.008 -0.00001 t= 0.22Μ 0.006 -0.000015 0.004 -600 -400 -200 -0.00002 200 400 600 x t= 0.04Μ t= 0.07Μ t= 0.10Μ -0.000025 solid: AdS; dashed: free streaming; dotted: 2nd order hydro 26 / 40 px-py ¶ 0.010 0.0098 0.00001 0.0022 0.009 -120 0.008 -90 -400 0.0018 0.006 40 80 120 t= 0.04Μ t= 0.12Μ 0.004 -200 -400 -200 x 400 -0.00001 t= 0.04Μ -0.00002 t= 0.20Μ 0.002 200 t= 0.08Μ -0.00003 200 400 x t= 0.12Μ -0.00004 solid: AdS; dashed: free streaming; dotted: 2nd order hydro 27 / 40 to become more realistic one needs heavy numerics van der Schee, Romatschke, Pratt, Hogg 1307.2539 and 1301.2635 AdS/CFT analytic: short time expansion ⇒ starting condition in local rest frame T µν = diag(−, PT , PT , −1.5PT ) AdS/CFT numerical solution of Einstein equations, enforcing convergence ds2 = −Adτ 2 + Σ2 e−B−C dξ 2 + eB dρ2 + eC dθ2 +2drdτ + 2Fdρdτ 6 X bi (τ, ρ)r −i B(r , τ, ρ) → B0 (r , τ, ρ) + 1 + σ 7 r −7 i=0 change at some time to a hydro code hadronization by MC code describing particle scattering 28 / 40 The general scheme i) early time expansion ii) numerical AdS iii) hydro iv) kinetic theory 29 / 40 Time evolution of energy density at center of fireball for different values of σ , τinit and τhydro . Central Energy Density Pb+Pb @ √s = 2.76 TeV analytic τ<<1 start AdS/CFT code AdS/CFT start hydro code hydro start cascade code no hydro matching 4 ε(ρ=0) [GeV ] 1 0.1 0.01 0.1 τ [fm/c] 1 10 30 / 40 PL /PT at center of fireball for different values of τhydro Pressure Anisotropy Pb+Pb @ √s = 2.76 TeV 10 no hydro matching 1 0.5 PL/PT(ρ=0) 0 -0.5 analytic τ<<1 start AdS/CFT code AdS/CFT start hydro code hydro start cascade code perfect isotropy -1 -1.5 -2 -2.5 -3 0.1 1 τ [fm/c] 10 31 / 40 Comparison with ALICE data Effect of choosing τhydro Pb+Pb @ √s=2.76 TeV 2000 Multiplicity 1800 ALICE dN/dY 1900 1700 1600 0.52 0.515 ALICE <pT>[GeV] 0.525 0.51 0.505 0.3 Pion Mean Transverse Momentum 0.35 0.4 0.45 0.5 0.55 τ hydro [fm/c] 0.6 0.65 0.7 32 / 40 Comparison with ALICE data Light Particle Spectra Pb+Pb @ √s = 2.76 TeV + 1000 π ,π - AdS+hydro+cascade hydro @ 1 fm/c + cascade dN/dY/dpT 100 10 1 + - K , K x 0.1 0.1 0.01 0.001 0 1 2 3 4 pT[GeV/c] 33 / 40 Comments: i.) The instability visible in PL /PT is physically irrelevant One has to average over the scale of the wave length BM & AS tbp, hopefully :-) harmonic oscillator in AdS Agon, Guijosa and Pedraza 1402.5961 34 / 40 Is this all to good to be true ? D. Steineder, S. A. Stricker and A. Vuorinen, 1304.3404 claim 2 huge corrections γ = ζ(3)λ−3/2 , λ = NgYM Z h i √ 1 1 1 d 10 x −g R10 − (∂φ)2 − (F5 )2 2κ10 2 4 · 5! Z 4 6 √ L d 10 x −g e−3/2 φ C + T (F5 ) + γ 2κ10 SIIB = quasinormal modes for the transverse electric field eigenmodes with complex frequency, poles of thermal photon propagator For λ → ∞ one gets analytically ωn (q = 0) = 2πTn(±1 − i). 35 / 40 0 0 -1 1 2 Re w` 4 3 5 6 7 Ê Ê ÊÊ l=1000 Im w` -2 Ï ‡ ‡ ‡‡‡ ‡ l=2000 Ú Ï Ï -3 ÏÏ l=3000 Ï Ú Ú -4 l=• Ú Ú l=10000 Ù l=5000 The four lowest q = 0 quasinormal poles on the complex ω plane for different values of λ 36 / 40 AS, A. Vuorinen, S. Waeber, L. Yaffe, tbp this might be due to an ill-defined expansion Only one of the higher order corrections 37 / 40 comparison to the situation for retarded Greens function and shear viscosity observable O(γ 0 ) O(γ 1 )-correction partial O(γ 2 )-corr. R iGxy,xy (ω,0)8π 2 Nc2 r03 w 1 195γ 695γ 2 η( π8 Nc2 T 3 )−1 1 145γ −8171γ 2 ω ˆ2 2 −2i (1.34 · 105 +0.43 · 105 i)γ (−4.18 · 1010 +3.07 · 1010 i)γ 2 38 / 40 Conclusions Understanding entropy production, hydroization and thermalization in HICs is a problem of fundamental importance. Thermalization for strong coupling as described by AdS/CFT suggests τhydroization ≈ 0.1fm/c and τequilibration ≈ 1fm/c. One needs 1+4 dim numerical AdS studies, including realistic initial fluctuations. Photon production does not provide a counter argument The initial magnetic field could have significant impact, see ˝ talk Gergely Endrodi 39 / 40 Many Thanks to V. Balasubramanian, A. Bernamonti, J. de Boer, L. Castagnini, P. Chesler, N. Copland, B. Craps, L. Franti, F. Galli, U. Gursoy, ¨ M. P. Heller, E. Keski-Vakkuri, N. Kilbertus, S. Mages, B. Muller, ¨ M. Panero, A. Rabenstein, M. Shigemori, W. Staessens, W. van der Schee, A. Vuorinen, S. Waeber, L. Yaffe 40 / 40
© Copyright 2025 ExpyDoc