Cellular arsenic accumulation in a cyanobacteria culture isolated from a high-As, low carbon geothermal setting Kimberly D. Myers, Christopher R. Omelon, & Philip C. Bennett The University of Texas at Austin ISEB 2014 November 18 ETGF El Tatio Geyser Field (ETGF) Antofagasta Region, Chile Atacama Desert Andean Altiplano Chemical Conditions at El Tatio Basin pH T (°C) [Cl] mM [Na] mM [Si] mM [As] mM [HCO3-] mM Upper 7.0 80.5 204 169 5.8 0.60 0.02 Middle 6.9 85.0 163 132 4.2 0.45 0.05 Lower 7.4 78.0 155 157 3.1 0.35 0.06 ² Circumneutral pH ² Very low dissolved inorganic carbon (DIC = CO2 + HCO3- + CO32-) ² Highest reported naturally occurring arsenic [As] as As(III), (V) As(V) buffers pH in El Tatio waters ² Neutral pH ² DIC buffers most natural waters Log activity mM ² Trace [DIC] as CO2+ HCO32- (0.1-0.5 mM) Stream pH is approximately equal to pKa2 of arsenate (6.94) Landrum, 2007; Landrum et al. 2009 pH Cyanobacteria Important primary producers in hot spring microbial mats Oxygenic photosynthesis 6 CO2 + 6 H2O light Great Geyser cyanobacteria-‐55m 10 μm C6H12O6 + 6 O2 Octopus Spring, YNP RuBisCO: enzyme essential to photosynthesis El Tatio conditions known to limit RuBisCO: -Low [DIC]= 0.1-0.5 mM -Temperature > 30°C -High UV Badger et al. 2006 The Carbon Concentrating Mechanism (CCM) Response to low [DIC] Carbonic Anhydrase (CA) HCO3- CA CO2 + OH- Causes pH increase pH buffering can positively impact CCM activity Figure courtesy of C. Omelon Silica - CCM of diatoms* As(V) – Cyanobacteria? *Milligan and Morel 2002 Arsenite Oxidation and Cyanobacterial Abundance along a Low-DIC Transect As(V) 454-‐pyrosequencing Negative association with As(III): r2 = 0.64, P < 1.8 x 10-4 (n=15) Positive association with As(V): r2 = 0.31, P < 0.026 Myers et al.-‐in prep As(III) El Tatio [As(III)] Cell death Biomass increase Average Response of Four Cyanobacteria Cultures Exposed to 0-20 mM As(III) or As(V) After 6 Days Control n=4 Std error of mean Myers et al.-‐in prep Cyanobacteria culture T-031 Unclassified Nostoc-like sp. Collection site: -26°C -Low DIC, -0.35 mM As(V) Subsection IV Filamentous, heterocystous, binary fission 10 um 100 90 80 70 60 50 40 30 20 10 0 Closed microcosm experiment AsIII AsV %DIC removed Unbuffered media 0.8 mM DIC initially 0.5 mM As(III) and As(V) 40 2 N=10 Low error 4 Days 6 30 8 20 Δ Biomass 0 10 0 -10 2 4 -20 -30 Myers et al.-‐in prep 0 -40 Days 6 8 Carbon limited and As(V)-buffered conditions 10.5 100 90 10 9.5 70 9 60 50 8.5 40 8 30 pH % DIC Removed 80 7.5 20 7 10 6.5 0 1 0mM As(V) 1.0mM As(V) Myers et al.-‐in prep 3 5 Days 7 n=10 Std error of mean Growth of Cyanobacteria with As(V)-buffering • Un-buffered treatment exhibits little growth on first day • As(V) buffered treatment diverts more DIC to growth Myers et al.-‐in prep Zone of pH buffering corresponds to elevated O2 FIG. 5. In-‐situ microprofiles of pH (¢) and dissolved oxygen concentraOon [O2] μmol/L (✚) of the top 1mm of a microbial mat at 75m along the Great Geyser transect, corresponding to site GG-‐75m (Table 1). Depth of 0 μm represents the water-‐microbial mat interface. Dashed lines on the photograph mark the upper 1 mm of a slice of a corresponding secOon of the sampled mat. Myers et al.-‐in prep Microbial Responses to As 1. 2. 3. 4. Anaerobic respiration (AsV AsIII) Arr Assimilation (arsenolipids, arsenosugars) Arsenite oxidation (AsIII AsV) Aox Detoxification (AsV AsIII) Ars Silver & Phung, 2005; Mukhopadhyay et al., 2002; Stolz et al 2006 Cyanobacteria • Cellular detoxification using Ars (Synechocystis sp. PCC 6803) • Cellular As(V) accumulation • As(V) accumulation, increased pigment content, and stimulated growth in Nostoc sp. and Anabaena sp. (Lopez-Maury et al. 2003, 2009; Bhattacharya & Pal 2010; Thiel 1988; Ferrari et al. 2013) As K-‐edge XANES • Cultures washed, pelleted, suspended on filter paper and analyzed for As speciaOon [(III), (V)] by synchrotron radiaOon • Only As(V) observed • Yet to be determined if As(V) is adached to cell membrane or stored within the cell Summary of results • Cyanobacteria are more abundant in As(V)-‐ dominated stream areas throughout El TaOo • Cyanobacteria are more sensiOve to As(III) in unbuffered condiOons • Cells accumulate As(V), which sOmulates carbon uptake and growth in DIC limited condiOons ImplicaOons • AccumulaOon and retenOon in cells makes inorganic As(V) available for buffering • As(V)-‐buffering leads to increased carbon assimilaOon and growth, advantageous to microbial communiOes in DIC-‐limited streams at El TaOo • May explain why previous work has observed As(V) accumulaOon (they possess the cellular machinery for ars—why not use it??) Acknowledgments Thanks to: The Bennett Lab Group, especially Chris Omelon, Megan Franks, and Phil Bennett Funding: The Jackson School of Geosciences, UT Austin NSF (SGER: EAR0085576) Current and Previous work by: Philip C. Bennett (PhD) and PI of NSF (SGER: EAR0085576) Annette S. Engel (PhD) Megan Franks (PhD) Christopher R. Omelon (PhD) Jeff Landrum (MS) Suzanne Pierce (PhD) Kim Myers: [email protected] References Badger, M. R., G. D. Price, B. M. Long and F. J. Woodger (2006). "The environmental plasOcity and ecological genomics of the cyanobacterial CO2 concentraOng mechanism." J Exp Bot 57(2): 249-‐265. Bhadacharya, P. and R. Pal (2010). "Response of cyanobacteria to arsenic toxicity." Journal of Applied Phycology 23(2): 293-‐299. Ferrari, S. G., P. G. Silva, D. M. González, J. A. Navoni and H. J. Silva (2013). "Arsenic tolerance of cyanobacterial strains with potenOal use in biotechnology." Revista ArgenOna de Microbiología 45(3): 174-‐179. Landrum, J. T. (2007). Fate and Transport of Arsenic and AnOmony in the El TaOo Geyser Field, Chile. Masters of Science in Geological Sciences, The University of Texas at AusOn. Landrum, J. T., P. C. Benned, A. S. Engel, M. A. Alsina, P. A. Pastén and K. Milliken (2009). "ParOOoning geochemistry of arsenic and anOmony, El TaOo Geyser Field, Chile." Applied Geochemistry 24(4): 664-‐676. Lopez-‐Maury, L., F. J. Florencio and J. C. Reyes (2003). "Arsenic Sensing and Resistance System in the Cyanobacterium SynechocysOs sp. Strain PCC 6803." Journal of Bacteriology 185(18): 5363-‐5371. Lopez-‐Maury, L., A. M. Sanchez-‐Riego, J. C. Reyes and F. J. Florencio (2009). "The glutathione/glutaredoxin system is essenOal for arsenate reducOon in SynechocysOs sp. strain PCC 6803." J Bacteriol 191(11): 3534-‐3543. Milligan, A. J. and F. M. Morel (2002). "A proton buffering role for silica in diatoms." Science 297(5588): 1848-‐1850. Mukhopadhyay, R., B. P. Rosen, L. T. Phung and S. Silver (2002). "Microbial arsenic: from geocycles to genes and enzymes." FEMS Microbiol Rev 26: 311-‐325. Silver, S. and L. T. Phung (2005). "Genes and enzymes involved in bacterial oxidaOon and reducOon of inorganic arsenic." Appl Environ Microbiol 71(2): 599-‐608. Stolz, J. F., P. Basu, J. M. SanOni and R. S. Oremland (2006). "Arsenic and selenium in microbial metabolism." Annu Rev Microbiol 60: 107-‐130. Thiel, T. (1988). "Phosphate transport and arsenate resistance in the cyanobacterium Anabaena variabilis." Journal of Bacteriology 170: 1143-‐1147.
© Copyright 2024 ExpyDoc