climate change effects on seagrasses, macroalgae

CLIMATE CHANGE EFFECTS ON SEAGRASSES,
MACROALGAE AND THEIR ECOSYSTEMS:
ELEVATED DIC, TEMPERATURE, OA AND THEIR
INTERACTIONS
Marguerite S. Koch, George E. Bowes, Cliff Ross, Xing-Hai Zhang
Josh Filina, Kate Peach, Brent Anderson
Aquatic Plant Ecology Laboratory, Biological Sciences Department, Florida Atlantic University
Department of Biology, University of Florida
Department of Biology, University of North Florida
Why are Marine Macroalgae &
Seagrasses Important?
•
•
•
•
•
•
•
•
Habitat - Foundation
Base Foodwebs
Sediment Stabilization
Sediment Generation Tropics
Settlement Sites Corals
Nutrient Cycling
Competitors (Nuisance spp)
Substrates - Epiphytes
Outline Talk
I.
REVIEW
i.
ii.
iii.
iv.
INORGANIC C SPECIATION
CARBON LIMITATION ISSUES
MECHANISMS C-ACQUISITION
CASCADING EFFECTS OA CLIMATE CHANGE
II. EXPERIMENTAL RESEARCH CO2 X TEMP INTERACTION
Inorganic Carbon Speciation – Carbonate Equilibria
(modified from Fabry et al . 2008)
Review Marine
Macroautotroph’s
Inorganic-C Pathways,
Bicarb Use and Ci Saturation
• Primarily C3 species (>85%)
• All use HCO3- (>99%)
• External Carbonic
Anhydrase (CAext)
• Not saturated present [Ci]
Review
Climate Change and OA Effects on Marine Macro-autotrophs
Koch, Bowes, Zang, and Ross (in press Global Change Biology)
Carboxylation vs Oxygenation C3 Plants
(Problem CO2 Affinity and Photorespiration)
Carboxylation
(Calvin Cycle)
Oxygenation
• C lost not recycled – up to 50% loss C
• No ATP produced and loss ATP and NADPH
• Increase in temperature results > photorespiration
Carbon Concentration Mechanisms (CCMs) C4/HCO3(Adaptation to Low CO2 – Concentrate CO2 at Rubisco)
C4 or C4 Like (Single Cell)
Bicarbonate Uptake (CCM?)
H+ ATPase pump-CO2 pump
2
4
5
H+
ATPase
CO2
Pump?
3
1
Cytoplasm
Chloroplast
C4
Radakovits et al. (2012)
1.
2.
3.
4.
C3 pathway and depend on CO2 diffusion
H+ Pump to lower pH cell surface speed up hydrolysis reaction CA at Ocean pH
Potentially a CO2 pump
Bicarbonate Transporter intercellular CA
Seagrasses and Marine Macroalgae Utilize HCO3- and CO2
Are They Saturated with Ci?
8
Photosynthesis (mg O2 g-1 dry wt h-1)
DIC Ocean ~2.4 mM
pH 7.80
pH 8.20
6
pH 8.61
4
• Not DIC Saturated
• Higher P elevated CO2
• Can utilize HCO3-
2
0
0
2
4
6
8
10
12
14
Dissolved inorganic carbon (mM)
Durako 1993
Thalassia testudinum
(Seagrass – Angiosperm)
Ocean Acidification and Climate Change Effects on Tropical Macroalgae and Seagrass
CO2(atm)
Atmosphere
Ocean
+
CO32-
-
pH
-
+
+
+
CA
H+
CO2(aq)
HCO3-
-
ΩCaCO3
CCM
C4 / HCO3- Use
-
Dissolution
Calcification
+
+
+
+
Nutrient
Cycling
0/+
+
-
Temp
No CCM
C3
+
Growth
0/
+
-
+
C:N:P
+
Biomass
Competition
Life History
Fleshy
Respiration
Rubisco
Down-regulation
Photosynthesis
+
Calcifiers
Photorespiration
Anti-herbivory
Metabolites
- Herbivory
-
Competition
Competition
Life History
Life History
Seagrass
+
Cellular Stress Response System
+
Temp
Thermal
Threshold
Cyanobacteria
Experimental Mesocosms (OA x Temp)
Experimental Design
Amb pCO2 x Amb Temp
Amb pCO2 x High Temp
Feb 2012/ July 2011
High pCO2 x Amb Temp
High pCO2 x High Temp
Tank Avg (SE) n=6
Ambient
High
Treatment
Temperature (oC)
24.8 /28.1
28.1/32.5
+4 oC
pH
7.99/8.03
7.73/7.68
- 0.3 pH
13/11
25/25
108% increase
CO2 (mmol kg-1)
Photosynthesis Measurements (P:I curves)
• Oxy-Lab 3 – 11 Light levels 0, 25, 50, 75, 100, 200,
400, 600, 800, 1000 and 1,200 mmol m-2 s-1
Elevated pCO2 x Temperature Winter Experiment
Halimeda incrassata
Sargassum fluitans
600
200
High Temp
High CO2
400
100
200
0
0
High CO2 x Temp
-200
600
n mol O2 gwwt-1 min-1
Control
High CO2 x Temp
-100
200
400
High Temp (28 oC)
Control (24 oC)
100
200
0
0
High Temp
-200
600
High Temp
-100
200
400
High CO2
(1000 uatm)
Control
(400 uatm)
100
200
0
0
High CO2
-200
0
200 400 600 800 1000 1200 1400
PAR
High CO2
-100
0
200 400 600 800 1000 1200 1400
PAR
100
Summer 2011
80
Sargassum fluitans
Halimeda incrassata
High CO2
60
Pmax (% Change from Controls)
40
20
High Temp
(34 oC)
32
High Temp
High CO2
0
-20
-40
CATH
CHTA
CHTH
100
Winter 2012
80
60
40
High Temp
(28 oC)
High CO2
20
0
High Temp
High CO2
-20
-40
Conclusions
• Ocean acidification (OA) effects on marine macroautotrophs:
• Increased CO2 for C3 spp not able to employ CCMs
• Increase rate of dehydration of HCO3- by external Carbonic Anydrase (CAext)
• Lower CO32- and saturation states CaCO3
• Potentially uncouple photosynthesis-calcification reactions (calcifiers)
• Elevated CO2 and temperature (+4oC) stimulates photosynthesis below thermal limits
• Thermal stress creates a negative synergy between elevated Temp x CO2
• Calcifying species unlikely to respond to CO2 constrained low CaCO3 saturation states
• Competition with fleshy species may also reduce calcified algae
Future Research Needs
• Basic research on photosynthetic biochemistry and calcification mechanisms and their
responses to CO2 and Temperature
• The effect of OA on CCMs and facultative use of various DIC acquisition systems
• The role of temperature and light on DIC limitation and acquisition systems employed
• Thermal limits of tropical species under climate change
• Short-term physiological responses need to be linked to longer-term growth
experiments in the mesocosm and field and interactions at the community
Acknowledgements
•
•
•
•
We sincerely thank Chris Langdon/Frank Millero pCO2 measurements
Students laboratory/field/ review assistance
FAU Climate Change Initiative
Everglades National Park
Questions?