Exercise in Mathematics I – End-of-term Exam (8 January 2008) Yoshihito Yasaki 学籍番号__________ 氏名____________ 座席番号_____ Answer all questions. (※参考) limit: 極限値 indeterminate form: 不定形 approximate: 近似する quadratic: 二次式 to the third decimal place: 小数第 3 位まで definite integral: 定積分 area: 面積 enclose: 囲う x-axis: x 軸 improper integral: 広義積分 exist: 存在する 1. Find the limit lim x →∞ lim x →∞ ( (x = lim x →∞ ) x 2 + x + 1 − x 2 − 3x + 1 x →∞ = lim ) )( x2 + x + 1 + x2 − 3x + 1 (1) Approximate y = (1 + x)5 as a quadratic in x . ) x 2 + x + 1 + x 2 − 3x + 1 2 + x + 1) − ( x 2 − 3x + 1) x 2 + x + 1 + x 2 − 3x + 1 4 1 1 3 1 1+ + 2 + 1− + 2 x x x x = lim x →∞ = 4x x 2 + x + 1 + x 2 − 3x + 1 4 =2 1+1 2. Find the limit of the indeterminate form xe x − sin x lim . x →0 x2 lim x →0 ( xe x − sin x )′ = lim e x + xe x − cos x xe x − sin x = lim x →0 x →0 x2 2x ( x 2 )′ (e = lim x + xe x − cos x )′ ( 2 x )′ x →0 = e x + e x + xe x + sin x x →0 2 = lim 1+1+ 0 + 0 2 −1 x with respect to x . Taking logarithms of both sides, log y = sin −1 x . y′ 1 Differentiating with respect to x , = y 1 − x2 y′ = y 1 − x2 = (2) Using the result from (1), approximate the third decimal place. 5 (1) esin −1 x 1 − x2 1.015 to y (0) = 1 y = (1 + x) 2 3 2 5 y ′ = (1 + x) 2 1 15 y ′′ = (1 + x) 2 4 5 2 15 y ′′(0) = 4 y ′(0) = 5 15 y = 1 + 2 x + 4 x 2 + ... 1! 2! 5 15 ≈ 1 + x + x2 2 8 (2) Let x = 0.01 in the above approximation. 5 15 1.015 ≈ 1 + × 0.01 + × 0.0001 ≈ 1 + 0.025 + 0.0002 2 8 ≈ 1.025 5. Find the indefinite integral log x ∫ x(2 + log x) dx . dt 1 = , so dx = x dt . dx x log x t−2 ⎛ 2⎞ ∫ x(2 + log x) dx = ∫ xt x dt = ∫ ⎜⎝1 − t ⎟⎠ dt = t − 2log t + C1 = 2 + log x − 2log 2 + log x + C1 Let t = 2 + log x . 3. Differentiate y = e sin indefinite integral: 不定積分 region: 領域 curve: 曲線 evaluate: 求める 4. Answer the following. x 2 + x + 1 − x 2 − 3x + 1 . x 2 + x + 1 − x 2 − 3x + 1 ( = lim x →∞ ( differentiate: 微分する Then, = log x − 2log 2 + log x + C ∫ tan 6. Find the indefinite integral −1 3 x dx . (※ ∫ f ′gdx = fg − ∫ fg ′dx で f ′ = 1 , g = tan −1 3 x ) ∫ sin −1 3x dx 1 + 9 x2 1 = x tan −1 3x − log (1 + 9 x 2 ) + C 6 3xdx = x tan −1 3x − ∫ 9. Find the area S of the region enclosed by the curve y = x 3 − x 2 − 2 x and the x-axis. y = x 3 − x 2 − 2 x = x( x + 1)( x − 2) The curve crosses the x-axis when x = −1, 0, 2 . y S1 −1 x O S = S1 + S 2 = ∫ 5x − 3 ∫ ( x + 1)( x − 3) dx . 7. Find the indefinite integral 0 −1 5x − 3 A B = + ( x + 1)( x − 3) x + 1 x − 3 5 x − 3 = A( x − 3) + B ( x + 1) When x = −1 , −8 = −4A , so A = 2 . When x = 3 , 12 = 4B , so B = 3 . 5x − 3 3 ⎞ ⎛ 2 ∫ ( x + 1)( x − 3) dx = ∫ ⎜⎝ x + 1 + x − 3 ⎟⎠ dx = 2log x + 1 + 3log x − 3 + C (x 2 S2 3 − x 2 − 2 x ) dx − ∫ ( x 3 − x 2 − 2 x ) dx 2 0 0 2 ⎡ x 4 x3 ⎤ ⎡ x 4 x3 ⎤ = ⎢ − − x2 ⎥ − ⎢ − − x2 ⎥ 3 3 ⎣4 ⎦ −1 ⎣ 4 ⎦0 8 37 ⎛1 1 ⎞ ⎛ ⎞ = 0 − ⎜ + − 1⎟ − ⎜ 4 − − 4 ⎟ + 0 = 3 12 ⎝4 3 ⎠ ⎝ ⎠ Let 10. Does the improper integral ∫ ∞ 0 e − 2 x dx exist? Evaluate it if it does. K ⎡ 1 ⎤ e dx = lim ⎢ − e−2 x ⎥ ∫ 0 e dx = Klim →∞ ∫ 0 K →∞ ⎣ 2 ⎦0 1⎞ 1 ⎛ 1 = lim ⎜ − e −2 K + ⎟ = K →∞ 2⎠ 2 ⎝ 2 The improper integral exists. ∞ 8. Find the definite integral ∫ 3 0 dx 18 − x 2 Let x = 3 2 sin t dx = 3 2 cos t dt x = 0 ↔ sin t = 0 ↔ t = 0 1 π x = 3 ↔ sin t = ↔t= 4 2 ∫ 3 0 dx 18 − x 2 π =∫4 0 3 2 cos t dx 3 2 cos t = [t ]0 = π 4 π 4 . −2 x K −2 x
© Copyright 2025 ExpyDoc