Assignment 2 PHY3604 Semester 1 2013/2014 Problems

Assignment 2 PHY3604
Semester 1 2013/2014
Problems are taken from Chapter 2 of M.L. Boas’ “Mathematical Methods in the Physical
Sciences”.
Section 4
For each of the following numbers, visualize where it is in the complex plane. Find x, y, r, for
these numbers and plot and label them on the complex plane. Also plot the complex conjugate
of the number.
4.
 3 i
8.
3
cos 32  i sin 32
13.
18.
20.
3 ei / 2
7  cos 110  i sin 110

Section 5
First simplify each of the following numbers to the x  iy form or to the r ei form. Then plot
the number in the complex plane.
i 2  2i  1
4.
5.
14.
15.
16.
i  3 
2
2.8 e  i (1.1)
5  2i
5  2i
1
0.5  cos 40  i sin 40 

Find each of the following in rectangular  a  bi  form if z  2  3i ; if z  x  iy .
20.
22.
1
z2
1
z i
Find the absolute value of each of the following using the discussion above.
5  2i
31.
5  2i
Solve for all possible values of the real numbers x and y in the following equations.
35.
x  iy  3i  4
41.
44.
47.
 2 x  3 y  5  i  x  2 y  1
2
x  iy  1  i 
3
 x  iy    1
 0
Section 9
Express the following complex numbers in the x  iy form. Try to visualize each complex
number, using sketches if necessary.
ei  e  i
10.
15.
1  i 
20.
 2 


 i 1
2
 1  i 
4
10
24.

1i 3
i
 1

21
38
Find the following absolute values. Results of problems 27 and 28 may be assumed.
31.
5 e2 i /3
34.
4 e2i 1
Section 11
Find each of the following in rectangular form x  iy and check your results by computer.
4.
6.
e3ln 2  i
cos  i ln 5 
8.
cos   2i ln 3
In the following integrals express the sines and cosines in exponential form and then integrate
to show that:
13.
14.

  sin 2x sin 3x dx 

 sin 4x dx  

2
0
2
0
Evaluate  e a  ib  x dx and take real and imaginary parts to show that:
17.

eax cos bx dx 
eax  a cos bx  b sin bx 
a 2  b2
Section 12
Verify each of the following by using equations (11.4), (12.2) and (12.3).
cosh 2 z  sinh 2 z  1
11.
12.
cos4 z  sin 4 z  1  12 sin 2 2 z
tan x  i tanh y
18.
tan z  tan  x  iy  
1  i tan x tanh y
Find the real part, the imaginary part, and the absolute value of
23.
cosh  ix 
31.
sinh  ln 2  i 3 
36.
sinh 1  i 2 
37.
cos  i 
Section 14
Evaluate each of the following in x  iy form, and compare with a computer solution.

3.
ln i 
13.
i 2i / 
1 i
 2i 
14.
3

Section 15
Find each of the following in the x  iy form and compare a computer solution.
5.
 
arccos i 8
1
 i 
6.
tanh
11.
sinh 1 i / 2
14.
arcsin  3i / 4 

