Sample Solutions Assigment 2 CSCI 3110 — Summer 2014 Question 1 The correct order is (lg n)2 p n 4lg n (= n2 ) n lg n n Let’s prove it: p • (lg n)2 ∈ o( n): First we observe that (lg n)2 lim p =0 n→∞ n ⇐⇒ lim n→∞ lg n n1/4 Now we have lim lg n n→∞ n1/4 lg e/n = lim n→∞ = lim n→∞ (1/4)n−3/4 4 lg e n1/4 = 0. • p n ∈ o(n): p lim n→∞ 1 = lim p n→∞ n n = 0. n • n ∈ o(n lg n): lim n→∞ n n lg n = lim n→∞ = 0. • n lg n ∈ o(n 2 ): 1 1 lg n = 0. 2n . n lg n lim n→∞ n2 = lim n→∞ = lim n→∞ = lim n→∞ lg n n lg e/n 1 lg e n = 0. • n 2 = 4lg n = 22 lg n ∈ o(2n ): Here we use the rule that f (n) ∈ o(g(n)) implies a f (n) ∈ o(a g(n) ). We use a = 2. Then f (n) = 2 lg n and g(n) = n. Using the calculation from the previous point, we have lim 2 lg n n n→∞ = 2 lim n→∞ lg n n = 2 · 0 = 0. Question 2 a. f (n) = 2n 2 + 3n 3 − 143n lg n + 12 ∈ Θ(n 3 ): First we determine constants n1 and c1 such that, for all n ≥ n1 , we have c1 n3 ≤ f (n): f (n) = 2n2 + 3n3 − 143n lg n + 12 0 ≥ −2n2 − 12 3n3 − 143n lg n f (n) ≥ ∀n 3 ∀ n ≥ 72 n3 ∀ n ≥ 72 − 2n + 143n lg n 0≥ f (n) ≥ ∀n So we have n1 = 72 and c1 = 1. Now we determine constants n2 and c2 such that, for all n ≥ n2 , we have f (n) ≤ c2 n3 : f (n) = 2n2 + 3n3 − 143n lg n + 12 0≤ f (n) ≤ ∀n ≥ 1 143n lg n 2n2 + 3n3 2 0 ≤ −2n + 2n + 12 3 ∀n ≥ 1 ∀n ≥ 1 f (n) ≤ 5n3 + 12 ∀n ≥ 1 0≤ 3 − 12 ∀n ≥ 1 f (n) ≤ 12n 17n3 ∀n ≥ 1 So we have n2 = 1 and c2 = 17. Now we choose n0 = max(n1 , n2 ) = 72, and we have n3 ≤ f (n) ≤ 17n3 , for all n ≥ 72. 2 b. f (n) = n lg n + n 2 − 11n − 18 ∈ Θ(n 2 ): Same procedure as in the previous question: First we look for constants n1 and c1 such that, for all n ≥ n1 , we have c1 n3 ≤ f (n): f (n) = n lg n + n2 − 11n − 18 0 ≥ −n lg n ∀n ≥ 1 n2 − 11n − 18 f (n) ≥ 0≥ f (n) ≥ 0≥ f (n) ≥ 1 − n2 + 11n 2 1 ∀n ≥ 1 ∀ n ≥ 22 n2 − 18 ∀ n ≥ 22 − n2 4 + 18 ∀n ≥ 9 2 1 1 4 n2 ∀ n ≥ 22 So we have n1 = 22 and c1 = 1/4. Now the upper bound: f (n) = n lg n + n2 − 11n − 18 0≤ 11n + 18 f (n) ≤ n lg n + n2 ∀n ≥ 0 2 ∀n ≥ 1 2n2 ∀n ≥ 1 0 ≤ −n lg n + n f (n) ≤ ∀n ≥ 0 So f (n) ≤ 2n2 for all n, and we have n2 /4 ≤ f (n) ≤ 2n2 for all n ≥ 22. 3 p c. f (n) = n lg n − 6n + 153 n − 1011 ∈ Θ(n lg n): Lower bound: f (n) = 0≥ f (n) ≥ p n lg n − 6n + 153 n − 1011 p − 153 n ∀n ≥ 0 n lg n − 6n ∀n ≥ 0 − 1011 1 0 ≥ − n lg n + 6n 2 1 ∀ n ≥ 212 n lg n − 1011 ∀ n ≥ 212 0 ≥ − n lg n 4 + 1011 ∀ n ≥ 500 f (n) ≥ f (n) ≥ 2 1 1 4 ∀ n ≥ 212 n lg n So we have n1 = 212 and c1 = 1/4. Upper bound: p f (n) = n lg n − 6n + 153 n − 1011 0≤ f (n) ≤ n lg n 0 ≤ n lg n + 1011 6n p + 153 n p − 153 n f (n) ≤ 2n lg n ∀n ≥ 0 ∀n ≥ 0 ∀ n ≥ (153)2 = 23409 ∀ n ≥ 23409 So we have n2 = 23409 and c2 = 2. Taking n0 = max(n1 , n2 ) = 212 , we obtain that f (n) ≤ 2n lg n, for all n ≥ 212 . 4 1 n lg n 4 ≤
© Copyright 2025 ExpyDoc