SECTION 14.2 LIMITS AND CONTINUITY 14.2 |||| 877 EXERCISES 1. Suppose that lim 共x, y兲 l 共3, 1兲 f 共x, y兲 苷 6. What can you say 24. about the value of f 共3, 1兲? What if f is continuous? lim 共x, y兲 l 共0, 0兲 xy3 x ⫹ y6 2 2. Explain why each function is continuous or discontinuous. (a) The outdoor temperature as a function of longitude, latitude, and time (b) Elevation (height above sea level) as a function of longitude, latitude, and time (c) The cost of a taxi ride as a function of distance traveled and time 25–26 Find h共x, y兲 苷 t共 f 共x, y兲兲 and the set on which h is continuous. 25. t共t兲 苷 t 2 ⫹ st , 26. t共t兲 苷 t ⫹ ln t, f 共x, y兲 苷 2 x ⫹ 3y ⫺ 6 f 共x, y兲 苷 1 ⫺ xy 1 ⫹ x2y2 3– 4 Use a table of numerical values of f 共x, y兲 for 共x, y兲 near the origin to make a conjecture about the value of the limit of f 共x, y兲 as 共x, y兲 l 共0, 0兲. Then explain why your guess is correct. x y ⫹x y ⫺5 2 ⫺ xy 2 3. f 共x, y兲 苷 3 3 2 2x y x 2 ⫹ 2y 2 4. f 共x, y兲 苷 ; 27–28 Graph the function and observe where it is discontinuous. Then use the formula to explain what you have observed. 27. f 共x, y兲 苷 e 1兾共x⫺y兲 1 1 ⫺ x2 ⫺ y2 28. f 共x, y兲 苷 5–22 Find the limit, if it exists, or show that the limit does 29–38 Determine the set of points at which the function is not exist. continuous. 5. 7. 9. 11. 13. lim 共5x ⫺ x y 兲 6. lim 4 ⫺ xy x 2 ⫹ 3y 2 8. lim y4 x 4 ⫹ 3y 4 10. lim x y cos y 3x 2 ⫹ y 2 12. lim xy sx 2 ⫹ y 2 14. 共x, y兲 l 共1, 2兲 共x, y兲 l 共2, 1兲 共x, y兲 l 共0, 0兲 共x, y兲 l 共0, 0兲 共x, y兲 l 共0, 0兲 3 2 15. 2 x ye x 4 ⫹ 4y 2 lim x ⫹y sx 2 ⫹ y 2 ⫹ 1 ⫺ 1 19. 20. 21. 22. 共x, y兲 l 共0, 0兲 ⫺xy 16. lim x 2 ⫹ 2y 2 ⫹ 3z 2 x 2 ⫹ y 2 ⫹ z2 lim 共x, y, z兲 l 共0, 0, 0兲 lim 共x, y, z兲 l 共0, 0, 0兲 ln lim x 2 ⫹ sin 2 y 2x 2 ⫹ y 2 lim 6x 3 y 2x 4 ⫹ y 4 lim x4 ⫺ y4 x2 ⫹ y2 共x, y兲 l 共1, 0兲 共x, y兲 l 共0, 0兲 共x, y兲 l 共0, 0兲 共x, y兲 l 共0, 0兲 冉 1 ⫹ y2 x 2 ⫹ xy lim 共x, y兲 l 共0, 0兲 冊 2 x sin y x 2 ⫹ 2y 2 29. F共x, y兲 苷 18. lim 共x, y兲 l 共0, 0兲 xy x2 ⫹ y8 x y ⫹ yz 2 ⫹ xz 2 x2 ⫹ y2 ⫹ z4 yz x 2 ⫹ 4y 2 ⫹ 9z 2 ; 23–24 Use a computer graph of the function to explain why the 23. lim 共x, y兲 l 共0, 0兲 30. F共x, y兲 苷 x⫺y 1 ⫹ x2 ⫹ y2 32. F共x, y兲 苷 e x y ⫹ sx ⫹ y 2 33. G共x, y兲 苷 ln共x 2 ⫹ y 2 ⫺ 4 兲 34. G共x, y兲 苷 tan⫺1(共x ⫹ y兲⫺2) 2 sy x2 ⫺ y2 ⫹ z2 35. f 共x, y, z兲 苷 36. f 共x, y, z兲 苷 sx ⫹ y ⫹ z 再 再 x2y3 37. f 共x, y兲 苷 2 x 2 ⫹ y 2 1 38. f 共x, y兲 苷 if 共x, y兲 苷 共0, 0兲 if 共x, y兲 苷 共0, 0兲 xy x2 ⫹ xy ⫹ y2 0 if 共x, y兲 苷 共0, 0兲 if 共x, y兲 苷 共0, 0兲 Assumindo que o limite existe, 39– 41 Use polar coordinates to find the limit. [If 共r, 兲 are polar coordinates of the point 共x, y兲 with r 艌 0, note that r l 0 ⫹ as 共x, y兲 l 共0, 0兲.] 39. 40. lim x3 ⫹ y3 x2 ⫹ y2 lim 共x 2 ⫹ y 2 兲 ln共x 2 ⫹ y 2 兲 lim e⫺x ⫺y ⫺ 1 x2 ⫹ y2 共x, y兲 l 共0, 0兲 共x, y兲 l 共0, 0兲 limit does not exist. 2x 2 ⫹ 3x y ⫹ 4y 2 3x 2 ⫹ 5y 2 sin共x y兲 e x ⫺ y2 31. F共x, y兲 苷 arctan( x ⫹ sy ) 4 sin共 z兾2兲 e 共x, y, z兲 l 共0, 0, 0兲 lim 2 lim 共x, y, z兲 l 共3, 0, 1兲 cos共x ⫹ y兲 e 2 lim 共x, y兲 l 共0, 0兲 ⫺xy lim 共x, y兲 l 共1, ⫺1兲 y 2 17. 2 2 41. 共x, y兲 l 共0, 0兲 2 14.3 SECTION 14.3 PARTIAL DERIVATIVES 5– 8 Determine the signs of the partial derivatives for the function |||| 889 10. A contour map is given for a function f . Use it to estimate fx 共2, 1兲 and fy 共2, 1兲. f whose graph is shown. y z 3 _4 0 6 _2 1 x 8 10 12 14 16 4 2 2 y 1 5. (a) fx 共1, 2兲 (b) fy 共1, 2兲 6. (a) fx 共1, 2兲 (b) fy 共1, 2兲 7. (a) fxx 共1, 2兲 (b) fyy 共1, 2兲 8. (a) fxy 共1, 2兲 (b) fxy 共1, 2兲 3 x 18 11. If f 共x, y兲 苷 16 4x 2 y 2, find fx 共1, 2兲 and fy 共1, 2兲 and inter- pret these numbers as slopes. Illustrate with either hand-drawn sketches or computer plots. 12. If f 共x, y兲 苷 s4 x 2 4y 2 , find fx 共1, 0兲 and fy 共1, 0兲 and interpret these numbers as slopes. Illustrate with either handdrawn sketches or computer plots. 9. The following surfaces, labeled a, b, and c, are graphs of a function f and its partial derivatives fx and fy . Identify each surface and give reasons for your choices. ; 13–14 Find fx and fy and graph f , fx , and fy with domains and viewpoints that enable you to see the relationships between them. 13. f 共x, y兲 苷 x 2 y 2 x 2 y 14. f 共x, y兲 苷 xex y 2 2 15–38 Find the first partial derivatives of the function. 8 4 15. f 共x, y兲 苷 y 5 3xy 16. f 共x, y兲 苷 x 4 y 3 8x 2 y z 0 17. f 共x, t兲 苷 et cos x 18. f 共x, t兲 苷 sx ln t 19. z 苷 共2x 3y兲 20. z 苷 tan xy _4 _8 _3 _2 _1 10 a 0 y 1 2 3 _2 0 x 2 21. f 共x, y兲 苷 xy xy 22. f 共x, y兲 苷 x y 23. w 苷 sin cos 24. w 苷 e v兾共u v 2 兲 25. f 共r, s兲 苷 r ln共r 2 s 2 兲 26. f 共x, t兲 苷 arctan ( x st ) 27. u 苷 te w兾t 28. f 共x, y兲 苷 29. f 共x, y, z兲 苷 xz 5x 2 y 3z 4 30. f 共x, y, z兲 苷 x sin共 y z兲 31. w 苷 ln共x 2y 3z兲 32. w 苷 ze xyz 33. u 苷 xy sin1共 yz兲 34. u 苷 x y兾z 35. f 共x, y, z, t兲 苷 x yz 2 tan共 yt兲 36. f 共x, y, z, t兲 苷 4 z 0 b _4 _3 _2 _1 0 y 1 2 3 2 0 _2 x 37. u 苷 sx 12 x 22 x n2 38. u 苷 sin共x 1 2x 2 nx n 兲 8 4 39– 42 Find the indicated partial derivatives. z 0 39. f 共x, y兲 苷 ln ( x sx 2 y 2 ); _4 _8 _3 _2 _1 c 0 y 1 2 3 2 0 _2 x 40. f 共x, y兲 苷 arctan共 y兾x兲; fx 共3, 4兲 fx 共2, 3兲 y ; fy 共2, 1, 1兲 41. f 共x, y, z兲 苷 xyz y x y cos共t 2 兲 dt xy2 t 2z 890 |||| CHAPTER 14 PARTIAL DERIVATIVES 42. f 共x, y, z兲 苷 ssin 2 x sin 2 y sin 2 z ; fz 共0, 0, 兾4兲 69. Use the table of values of f 共x, y兲 to estimate the values of fx 共3, 2兲, fx 共3, 2.2兲, and fx y 共3, 2兲. 43– 44 Use the definition of partial derivatives as limits (4) to find 44. f 共x, y兲 苷 43. f 共x, y兲 苷 xy 2 x 3y y 1.8 2.0 2.2 2.5 12. 5 10. 2 9.3 3.0 18. 1 17. 5 15. 9 3.5 20. 0 22. 4 26. 1 x fx 共x, y兲 and fy 共x, y兲. x x y2 45– 48 Use implicit differentiation to find z兾x and z兾y. 45. x 2 y 2 z 2 苷 3x yz 46. yz 苷 ln共x z兲 47. x z 苷 arctan共 yz兲 48. sin共x yz兲 苷 x 2y 3z 49–50 Find z兾x and z兾y. 70. Level curves are shown for a function f . Determine whether the following partial derivatives are positive or negative at the point P. (a) fx (b) fy (c) fxx (d) fxy (e) fyy y 49. (a) z 苷 f 共x兲 t共 y兲 (b) z 苷 f 共x y兲 50. (a) z 苷 f 共x兲 t共 y兲 (b) z 苷 f 共x y兲 10 8 (c) z 苷 f 共x兾y兲 6 4 2 P 51–56 Find all the second partial derivatives. x 51. f 共x, y兲 苷 x 3 y 5 2x 4 y 52. f 共x, y兲 苷 sin 2 共mx ny兲 53. w 苷 su 2 v 2 54. v 苷 55. z 苷 arctan xy 1 xy xy xy 56. v 苷 e xe 71. Verify that the function u 苷 e 2 2 k t sin kx is a solution of the heat conduction equation u t 苷 2u xx . 72. Determine whether each of the following functions is a solution y 57–60 Verify that the conclusion of Clairaut’s Theorem holds, that is, u x y 苷 u yx . 57. u 苷 x sin共x 2y兲 58. u 苷 x 4 y 2 2xy 5 59. u 苷 ln sx 2 y 2 60. u 苷 x ye y of Laplace’s equation u xx u yy 苷 0 . (a) u 苷 x 2 y 2 (b) u 苷 x 2 y 2 3 2 (c) u 苷 x 3xy (d) u 苷 ln sx 2 y 2 (e) u 苷 sin x cosh y cos x sinh y (f) u 苷 ex cos y ey cos x 73. Verify that the function u 苷 1兾sx 2 y 2 z 2 is a solution of the three-dimensional Laplace equation u xx u yy u zz 苷 0 . 74. Show that each of the following functions is a solution of the wave equation u t t 苷 a 2u xx . (a) u 苷 sin共k x兲 sin共ak t兲 (b) u 苷 t兾共a 2t 2 x 2 兲 (c) u 苷 共x at兲6 共x at兲6 (d) u 苷 sin共x at兲 ln共x at兲 61–68 Find the indicated partial derivative. 61. f 共x, y兲 苷 3x y 4 x 3 y 2; 2 ct 62. f 共x, t兲 苷 x e ; fttt , fxxy , fyyy ftxx 75. If f and t are twice differentiable functions of a single vari- 63. f 共x, y, z兲 苷 cos共4x 3y 2z兲; 64. f 共r, s, t兲 苷 r ln共rs 2 t 3 兲; frss , 67. w 苷 x ; y 2z 68. u 苷 x a y bz c; able, show that the function u共x, t兲 苷 f 共x at兲 t共x at兲 is a solution of the wave equation given in Exercise 74. 76. If u 苷 e a1 x1a2 x2an x n, where a 12 a 22 a n2 苷 1, show that z u v w 3 66. z 苷 us v w ; fyzz frst 3u r 2 65. u 苷 e r sin ; fxy z , 3w , z y x 6u x y 2 z 3 3w x 2 y 2u 2u 2u 苷u 2 2 x1 x 2 x n2 77. Verify that the function z 苷 ln共e x e y 兲 is a solution of the differential equations z z 苷1 x y SECTION 14.3 PARTIAL DERIVATIVES and 2z 2 z x 2 y 2 冉 冊 2z x y are fx 共x, y兲 苷 x 4y and fy 共x, y兲 苷 3x y. Should you believe it? 苷0 2 2 ; 88. The paraboloid z 苷 6 x x 2y intersects the plane x 苷 1 in a parabola. Find parametric equations for the tangent line to this parabola at the point 共1, 2, 4兲. Use a computer to graph the paraboloid, the parabola, and the tangent line on the same screen. satisfies the equation P P K 苷 共 兲P L K 89. The ellipsoid 4x 2 2y 2 z 2 苷 16 intersects the plane y 苷 2 79. Show that the Cobb-Douglas production function satisfies P共L, K0 兲 苷 C1共K0 兲L by solving the differential equation in an ellipse. Find parametric equations for the tangent line to this ellipse at the point 共1, 2, 2兲. P dP 苷 dL L 90. In a study of frost penetration it was found that the temperature (See Equation 5.) T at time t (measured in days) at a depth x (measured in feet) can be modeled by the function 80. The temperature at a point 共x, y兲 on a flat metal plate is given by T共x, y兲 苷 60兾共1 x 2 y 2 兲, where T is measured in C and x, y in meters. Find the rate of change of temperature with respect to distance at the point 共2, 1兲 in (a) the x-direction and (b) the y-direction. T共x, t兲 苷 T0 T1 e x sin共 t x兲 81. The total resistance R produced by three conductors with resis- tances R1 , R2 , R3 connected in a parallel electrical circuit is given by the formula ; 1 1 1 1 苷 R R1 R2 R3 Find R兾R1. where 苷 2兾365 and is a positive constant. (a) Find T兾x. What is its physical significance? (b) Find T兾t. What is its physical significance? (c) Show that T satisfies the heat equation Tt 苷 kTxx for a certain constant k. (d) If 苷 0.2, T0 苷 0, and T1 苷 10, use a computer to graph T共x, t兲. (e) What is the physical significance of the term x in the expression sin共 t x兲? 91. Use Clairaut’s Theorem to show that if the third-order partial 82. The gas law for a fixed mass m of an ideal gas at absolute tem- derivatives of f are continuous, then perature T, pressure P, and volume V is PV 苷 mRT, where R is the gas constant. Show that fx yy 苷 fyx y 苷 fyyx P V T 苷 1 V T P 92. (a) How many nth-order partial derivatives does a function of two variables have? (b) If these partial derivatives are all continuous, how many of them can be distinct? (c) Answer the question in part (a) for a function of three variables. 83. For the ideal gas of Exercise 82, show that T 891 87. You are told that there is a function f whose partial derivatives 2 78. Show that the Cobb-Douglas production function P 苷 bLK L |||| P V 苷 mR T T 93. If f 共x, y兲 苷 x共x 2 y 2 兲3兾2e sin共x y兲, find fx 共1, 0兲. 84. The wind-chill index is modeled by the function 2 [Hint: Instead of finding fx 共x, y兲 first, note that it’s easier to use Equation 1 or Equation 2.] W 苷 13.12 0.6215T 11.37v 0.16 0.3965T v 0.16 where T is the temperature 共C兲 and v is the wind speed 共km兾h兲. When T 苷 15C and v 苷 30 km兾h, by how much would you expect the apparent temperature W to drop if the actual temperature decreases by 1C ? What if the wind speed increases by 1 km兾h ? 3 x 3 y 3 , find fx 共0, 0兲. 94. If f 共x, y兲 苷 s 95. Let 85. The kinetic energy of a body with mass m and velocity v is K 苷 12 mv 2. Show that K 2K 苷K m v 2 ; 86. If a, b, c are the sides of a triangle and A, B, C are the opposite angles, find A兾a, A兾b, A兾c by implicit differentiation of the Law of Cosines. 再 x 3y xy 3 x2 y2 f 共x, y兲 苷 0 CAS (a) (b) (c) (d) (e) if 共x, y兲 苷 共0, 0兲 if 共x, y兲 苷 共0, 0兲 Use a computer to graph f . Find fx 共x, y兲 and fy 共x, y兲 when 共x, y兲 苷 共0, 0兲. Find fx 共0, 0兲 and fy 共0, 0兲 using Equations 2 and 3. Show that fxy 共0, 0兲 苷 1 and fyx 共0, 0兲 苷 1. Does the result of part (d) contradict Clairaut’s Theorem? Use graphs of fxy and fyx to illustrate your answer. SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS 1–6 Find an equation of the tangent plane to the given surface at 1. z 苷 4x 2 ⫺ y 2 ⫹ 2y, 共⫺1, 2, 4兲 2. z 苷 3共x ⫺ 1兲 ⫹ 2共 y ⫹ 3兲2 ⫹ 7, 2 3. z 苷 sxy , f 共x, y兲 苷 ln共x ⫺ 3y兲 at 共7, 2兲 and use it to approximate f 共6.9, 2.06兲. Illustrate by graphing f and the tangent plane. 共1, 4, 0兲 5. z 苷 y cos共x ⫺ y兲, 6. z 苷 e x ⫺y , 2 ; 20. Find the linear approximation of the function 共2, ⫺2, 12兲 共1, 1, 1兲 4. z 苷 y ln x, 2 21. Find the linear approximation of the function f 共x, y, z兲 苷 sx 2 ⫹ y 2 ⫹ z 2 at 共3, 2, 6兲 and use it to approximate the number s共3.02兲 2 ⫹ 共1.97兲 2 ⫹ 共5.99兲 2 . 共2, 2, 2兲 共1, ⫺1, 1兲 22. The wave heights h in the open sea depend on the speed v ; 7– 8 Graph the surface and the tangent plane at the given point. (Choose the domain and viewpoint so that you get a good view of both the surface and the tangent plane.) Then zoom in until the surface and the tangent plane become indistinguishable. 7. z 苷 x 2 ⫹ xy ⫹ 3y 2, 8. z 苷 arctan共xy 2 兲, of the wind and the length of time t that the wind has been blowing at that speed. Values of the function h 苷 f 共v, t兲 are recorded in feet in the following table. Duration (hours) 共1, 1, 兾4兲 point. (Use your computer algebra system both to compute the partial derivatives and to graph the surface and its tangent plane.) Then zoom in until the surface and the tangent plane become indistinguishable. xy sin共x ⫺ y兲 , 1 ⫹ x2 ⫹ y2 t v 共1, 1, 5兲 9–10 Draw the graph of f and its tangent plane at the given 9. f 共x, y兲 苷 19. Find the linear approximation of the function f 共x, y兲 苷 s20 ⫺ x 2 ⫺ 7y 2 at 共2, 1兲 and use it to approximate f 共1.95, 1.08兲. the specified point. 10. f 共x, y兲 苷 e⫺xy兾10 (sx ⫹ sy ⫹ sxy ), 5 10 15 20 30 40 50 20 5 7 8 8 9 9 9 30 9 13 16 17 18 19 19 40 14 21 25 28 31 33 33 50 19 29 36 40 45 48 50 60 24 37 47 54 62 67 69 Use the table to find a linear approximation to the wave height function when v is near 40 knots and t is near 20 hours. Then estimate the wave heights when the wind has been blowing for 24 hours at 43 knots. 共1, 1, 0兲 共1, 1, 3e⫺0.1兲 23. Use the table in Example 3 to find a linear approximation to the heat index function when the temperature is near 94⬚F and the relative humidity is near 80%. Then estimate the heat index when the temperature is 95⬚F and the relative humidity is 78%. 11–16 Explain why the function is differentiable at the given point. Then find the linearization L共x, y兲 of the function at that point. 11. f 共x, y兲 苷 x sy , 12. f 共x, y兲 苷 x y , 3 13. f 共x, y兲 苷 4 共1, 4兲 24. The wind-chill index W is the perceived temperature when the actual temperature is T and the wind speed is v, so we can write W 苷 f 共T, v兲. The following table of values is an excerpt 共1, 1兲 x , 共2, 1兲 x⫹y 14. f 共x, y兲 苷 sx ⫹ e 4y , ⫺xy 15. f 共x, y兲 苷 e cos y, from Table 1 in Section 14.1. Wind speed (km/h) 共3, 0兲 Actual temperature (°C) CAS 899 EXERCISES Wind speed (knots) 14.4 |||| 共, 0兲 16. f 共x, y兲 苷 sin共2 x ⫹ 3y兲, 共⫺3, 2兲 17–18 Verify the linear approximation at 共0, 0兲. 17. 2x ⫹ 3 ⬇ 3 ⫹ 2x ⫺ 12y 4y ⫹ 1 v 20 30 40 50 60 70 ⫺10 ⫺18 ⫺20 ⫺21 ⫺22 ⫺23 ⫺23 ⫺15 ⫺24 ⫺26 ⫺27 ⫺29 ⫺30 ⫺30 ⫺20 ⫺30 ⫺33 ⫺34 ⫺35 ⫺36 ⫺37 ⫺25 ⫺37 ⫺39 ⫺41 ⫺42 ⫺43 ⫺44 T 18. sy ⫹ cos 2 x ⬇ 1 ⫹ 2 y 1 Use the table to find a linear approximation to the wind-chill 900 |||| CHAPTER 14 PARTIAL DERIVATIVES index function when T is near ⫺15⬚C and v is near 50 km兾h. Then estimate the wind-chill index when the temperature is ⫺17⬚C and the wind speed is 55 km兾h. 39. If R is the total resistance of three resistors, connected in par- allel, with resistances R1 , R2 , R3 , then 1 1 1 1 苷 ⫹ ⫹ R R1 R2 R3 25–30 Find the differential of the function. 25. z 苷 x 3 ln共 y 2 兲 26. v 苷 y cos xy 27. m 苷 p 5q 3 28. T 苷 29. R 苷 ␣ 2 cos ␥ 30. w 苷 xye xz v 1 ⫹ u vw 31. If z 苷 5x 2 ⫹ y 2 and 共x, y兲 changes from 共1, 2兲 to 共1.05, 2.1兲, compare the values of ⌬z and dz. 32. If z 苷 x 2 ⫺ xy ⫹ 3y 2 and 共x, y兲 changes from 共3, ⫺1兲 to 共2.96, ⫺0.95兲, compare the values of ⌬z and dz. 33. The length and width of a rectangle are measured as 30 cm and 24 cm, respectively, with an error in measurement of at most 0.1 cm in each. Use differentials to estimate the maximum error in the calculated area of the rectangle. 34. The dimensions of a closed rectangular box are measured as 80 cm, 60 cm, and 50 cm, respectively, with a possible error of 0.2 cm in each dimension. Use differentials to estimate the maximum error in calculating the surface area of the box. 35. Use differentials to estimate the amount of tin in a closed tin can with diameter 8 cm and height 12 cm if the tin is 0.04 cm thick. 36. Use differentials to estimate the amount of metal in a closed cylindrical can that is 10 cm high and 4 cm in diameter if the metal in the top and bottom is 0.1 cm thick and the metal in the sides is 0.05 cm thick. If the resistances are measured in ohms as R1 苷 25 ⍀, R2 苷 40 ⍀, and R3 苷 50 ⍀, with a possible error of 0.5% in each case, estimate the maximum error in the calculated value of R. 40. Four positive numbers, each less than 50, are rounded to the first decimal place and then multiplied together. Use differentials to estimate the maximum possible error in the computed product that might result from the rounding. 41. A model for the surface area of a human body is given by S 苷 0.1091w 0.425 h 0.725, where w is the weight (in pounds), h is the height (in inches), and S is measured in square feet. If the errors in measurement of w and h are at most 2%, use differentials to estimate the maximum percentage error in the calculated surface area. 42. Suppose you need to know an equation of the tangent plane to a surface S at the point P共2, 1, 3兲. You don’t have an equation for S but you know that the curves r1共t兲 苷 具2 ⫹ 3t, 1 ⫺ t 2, 3 ⫺ 4t ⫹ t 2 典 r2共u兲 苷 具1 ⫹ u 2, 2u 3 ⫺ 1, 2u ⫹ 1 典 both lie on S. Find an equation of the tangent plane at P. 43– 44 Show that the function is differentiable by finding values of 1 and 2 that satisfy Definition 7. 43. f 共x, y兲 苷 x 2 ⫹ y 2 45. Prove that if f is a function of two variables that is differen- tiable at 共a, b兲, then f is continuous at 共a, b兲. Hint: Show that lim 共⌬x, ⌬y兲 l 共0, 0兲 37. A boundary stripe 3 in. wide is painted around a rectangle whose dimensions are 100 ft by 200 ft. Use differentials to approximate the number of square feet of paint in the stripe. 46. (a) The function f 共x, y兲 苷 38. The pressure, volume, and temperature of a mole of an ideal gas are related by the equation PV 苷 8.31T , where P is measured in kilopascals, V in liters, and T in kelvins. Use differentials to find the approximate change in the pressure if the volume increases from 12 L to 12.3 L and the temperature decreases from 310 K to 305 K. 44. f 共x, y兲 苷 xy ⫺ 5y 2 f 共a ⫹ ⌬x, b ⫹ ⌬y兲 苷 f 共a, b兲 再 xy x2 ⫹ y2 0 if 共x, y兲 苷 共0, 0兲 if 共x, y兲 苷 共0, 0兲 was graphed in Figure 4. Show that fx 共0, 0兲 and fy 共0, 0兲 both exist but f is not differentiable at 共0, 0兲. [Hint: Use the result of Exercise 45.] (b) Explain why fx and fy are not continuous at 共0, 0兲. SECTION 14.5 THE CHAIN RULE EXAMPLE 9 Find |||| 907 z z and if x 3 y 3 z 3 6 xyz 苷 1. x y SOLUTION Let F共x, y, z兲 苷 x 3 y 3 z 3 6xyz 1. Then, from Equations 7, we have Fx x 2 2yz z 3x 2 6yz 苷 苷 2 苷 2 x Fz 3z 6xy z 2xy The solution to Example 9 should be compared to the one in Example 4 in Section 14.3. N 14.5 z 3y 2 6xz Fy y 2 2xz 苷 2 苷 苷 2 y Fz 3z 6xy z 2xy M EXERCISES 1–6 Use the Chain Rule to find dz兾dt or dw兾dt. 1. z 苷 x y xy, 2 x 苷 sin t, 2 2. z 苷 cos共x 4y兲, 5. w 苷 xe y兾z, 14. Let W共s, t兲 苷 F共u共s, t兲, v共s, t兲兲, where F, u, and v are differentiable, and u共1, 0兲 苷 2 v共1, 0兲 苷 3 us共1, 0兲 苷 2 vs共1, 0兲 苷 5 u t 共1, 0兲 苷 6 vt 共1, 0兲 苷 4 Fu共2, 3兲 苷 1 Fv共2, 3兲 苷 10 x 苷 5t 4, y 苷 1兾t 3. z 苷 s1 x 2 y 2 , 4. z 苷 tan1共 y兾x兲, y苷e t x 苷 ln t, x 苷 e t, x 苷 t 2, y 苷 cos t y 苷 1 et y 苷 1 t, 6. w 苷 ln sx 2 y 2 z 2 , z 苷 1 2t x 苷 sin t, y 苷 cos t, z 苷 tan t Find Ws 共1, 0兲 and Wt 共1, 0兲. 15. Suppose f is a differentiable function of x and y, and t共u, v兲 苷 f 共e u sin v, e u cos v兲. Use the table of values 7–12 Use the Chain Rule to find z兾s and z兾t. 7. z 苷 x y , 2 3 x 苷 s cos t, 8. z 苷 arcsin共x y兲, 9. z 苷 sin cos , 10. z 苷 e x2y, y 苷 s sin t x苷s t , 2 2 y 苷 1 2st 苷 st 2, 苷 s 2 t x 苷 s兾t, y 苷 t兾s 苷 ss 2 t 2 r 苷 st, 12. z 苷 tan共u兾v兲, u 苷 2s 3t, v 苷 3s 2t 13. If z 苷 f 共x, y兲, where f is differentiable, and x 苷 t共t兲 y 苷 h共t兲 t共3兲 苷 2 h共3兲 苷 7 t共3兲 苷 5 h共3兲 苷 4 fx 共2, 7兲 苷 6 fy 共2, 7兲 苷 8 find dz兾dt when t 苷 3. f t fx fy 共0, 0兲 3 6 4 8 共1, 2兲 6 3 2 5 16. Suppose f is a differentiable function of x and y, and 11. z 苷 e cos , r to calculate tu共0, 0兲 and tv共0, 0兲. t共r, s兲 苷 f 共2r s, s 2 4r兲. Use the table of values in Exercise 15 to calculate tr 共1, 2兲 and ts 共1, 2兲. 17–20 Use a tree diagram to write out the Chain Rule for the given case. Assume all functions are differentiable. 17. u 苷 f 共x, y兲, where x 苷 x共r, s, t兲, y 苷 y共r, s, t兲 18. R 苷 f 共x, y, z, t兲, where x 苷 x共u, v, w兲, y 苷 y共u, v, w兲, z 苷 z共u, v, w兲, t 苷 t共u, v, w兲 19. w 苷 f 共r, s, t兲, where r 苷 r共x, y兲, s 苷 s共x, y兲, t 苷 t共x, y兲 20. t 苷 f 共u, v, w兲, where u 苷 u共 p, q, r, s兲, v 苷 v共 p, q, r, s兲, w 苷 w共 p, q, r, s兲 908 |||| CHAPTER 14 PARTIAL DERIVATIVES 21–26 Use the Chain Rule to find the indicated partial derivatives. 21. z 苷 x xy , 2 x 苷 uv w , 3 2 z z z , , u v w u u u , , x y t C 苷 1449.2 4.6T 0.055T 2 0.00029T 3 0.016D where C is the speed of sound (in meters per second), T is the temperature (in degrees Celsius), and D is the depth below the ocean surface (in meters). A scuba diver began a leisurely dive into the ocean water; the diver’s depth and the surrounding water temperature over time are recorded in the following graphs. Estimate the rate of change (with respect to time) of the speed of sound through the ocean water experienced by the diver 20 minutes into the dive. What are the units? r 苷 y x cos t, s 苷 x y sin t ; when x 苷 1, y 苷 2, t 苷 0 23. R 苷 ln共u 2 v 2 w 2 兲, u 苷 x 2y, v 苷 2x y, w 苷 2xy; when x 苷 y 苷 1 2 24. M 苷 xe yz , M M , u v w when u 苷 2, v 苷 1, w 苷 0 22. u 苷 sr 2 s 2 , R R , x y 37. The speed of sound traveling through ocean water with salinity 35 parts per thousand has been modeled by the equation y 苷 u ve ; 3 x 苷 2u v, y 苷 u v, z 苷 u v; when u 苷 3, v 苷 1 x 苷 pr cos , 25. u 苷 x yz, 2 u u u , , p r y 苷 pr sin , z 苷 p r; Y Y Y , , r s t u 苷 r s, v 苷 s t, w 苷 t r; when r 苷 1, s 苷 0, t 苷 1 27. sxy 苷 1 x y 28. y x y 苷 1 ye 29. cos共x y兲 苷 xe 5 y 20 14 15 12 10 10 5 8 20 30 40 t (min) 10 20 30 40 t (min) 38. The radius of a right circular cone is increasing at a rate of 1.8 in兾s while its height is decreasing at a rate of 2.5 in兾s. At what rate is the volume of the cone changing when the radius is 120 in. and the height is 140 in.? 39. The length 艎, width w, and height h of a box change with 27–30 Use Equation 6 to find dy兾dx. 2 T 16 10 when p 苷 2, r 苷 3, 苷 0 26. Y 苷 w tan1共u v兲, D 2 3 x2 30. sin x cos y 苷 sin x cos y 31–34 Use Equations 7 to find z兾x and z兾y. 31. x 2 y 2 z 2 苷 3x yz 32. x yz 苷 cos共x y z兲 33. x z 苷 arctan共 yz兲 34. yz 苷 ln共x z兲 35. The temperature at a point 共x, y兲 is T共x, y兲, measured in degrees Celsius. A bug crawls so that its position after t seconds is given by x 苷 s1 t , y 苷 2 13 t, where x and y are measured in centimeters. The temperature function satisfies Tx 共2, 3兲 苷 4 and Ty 共2, 3兲 苷 3. How fast is the temperature rising on the bug’s path after 3 seconds? 36. Wheat production W in a given year depends on the average temperature T and the annual rainfall R. Scientists estimate that the average temperature is rising at a rate of 0.15°C兾year and rainfall is decreasing at a rate of 0.1 cm兾year. They also estimate that, at current production levels, W兾T 苷 2 and W兾R 苷 8. (a) What is the significance of the signs of these partial derivatives? (b) Estimate the current rate of change of wheat production, dW兾dt. time. At a certain instant the dimensions are 艎 苷 1 m and w 苷 h 苷 2 m, and 艎 and w are increasing at a rate of 2 m兾s while h is decreasing at a rate of 3 m兾s. At that instant find the rates at which the following quantities are changing. (a) The volume (b) The surface area (c) The length of a diagonal 40. The voltage V in a simple electrical circuit is slowly decreasing as the battery wears out. The resistance R is slowly increasing as the resistor heats up. Use Ohm’s Law, V 苷 IR, to find how the current I is changing at the moment when R 苷 400 , I 苷 0.08 A, dV兾dt 苷 0.01 V兾s, and dR兾dt 苷 0.03 兾s. 41. The pressure of 1 mole of an ideal gas is increasing at a rate of 0.05 kPa兾s and the temperature is increasing at a rate of 0.15 K兾s. Use the equation in Example 2 to find the rate of change of the volume when the pressure is 20 kPa and the temperature is 320 K. 42. Car A is traveling north on Highway 16 and car B is traveling west on Highway 83. Each car is approaching the intersection of these highways. At a certain moment, car A is 0.3 km from the intersection and traveling at 90 km兾h while car B is 0.4 km from the intersection and traveling at 80 km兾h. How fast is the distance between the cars changing at that moment? 43. One side of a triangle is increasing at a rate of 3 cm兾s and a second side is decreasing at a rate of 2 cm兾s. If the area of the APPENDIX I ANSWERS TO ODD-NUMBERED EXERCISES EXERCISES 14.2 N 5. 1 7. 2 7 9. Does not exist 13. 0 15. Does not exist 21. Does not exist 3. 5 2 11. Does not exist 17. 2 19. 1 10 0 _2 x 25. h共x, y兲 苷 共2 x 3y 6兲 2 s2x 3y 6 ; ⱍ 兵共x, y兲 2x 3y 6其 ⱍ ⱍ 33. 兵共x, y兲 x 2 y 2 4其 ⱍ ⱍ _2 0 _2 0 2 y fx _10 _2 41. 1 39. 0 2 z 0 35. 兵共x, y, z兲 y 0, y 苷 sx 2 z 2 其 37. 兵共x, y兲 共x, y兲 苷 共0, 0兲其 0 10 29. 兵共x, y兲 y 苷 e x兾2 其 ⱍ 31. 兵共x, y兲 y 0其 f z 23. The graph shows that the function approaches different numbers along different lines. 27. Along the line y 苷 x A119 13. fx 苷 2x 2xy, fy 苷 2y x 2 PAGE 877 1. Nothing; if f is continuous, f 共3, 1兲 苷 6 |||| x 0 2 2 y 43. z 2 1 z 0 fy 0 _1 _2 _2 y 0 f is continuous on ⺢ EXERCISES 14.3 N 0x 2 2 _2 x 2 PAGE 888 1. (a) The rate of change of temperature as longitude varies, with latitude and time fixed; the rate of change as only latitude varies; the rate of change as only time varies. (b) Positive, negative, positive 3. (a) fT 共15, 30兲 ⬇ 1.3; for a temperature of 15C and wind speed of 30 km兾h, the wind-chill index rises by 1.3C for each degree the temperature increases. fv 共15, 30兲 ⬇ 0.15; for a temperature of 15C and wind speed of 30 km兾h, the wind-chill index decreases by 0.15C for each km兾h the wind speed increases. (b) Positive, negative (c) 0 (b) Negative 5. (a) Positive 7. (a) Positive (b) Negative 9. c 苷 f, b 苷 fx, a 苷 fy 11. fx 共1, 2兲 苷 8 苷 slope of C1 , fy共1, 2兲 苷 4 苷 slope of C2 z 16 16 (1, 2, 8) (1, 2, 8) C¡ 0 x 0 4 2 y (1, 2) C™ 4 2 x y (1, 2) 2 _2 0 2 y fx 共x, y兲 苷 3y, fy 共x, y兲 苷 5y 4 3x fx 共x, t兲 苷 e t sin x, ft 共x, t兲 苷 et cos x z兾x 苷 20共2x 3y兲 9, z兾y 苷 30共2x 3y兲 9 fx 共x, y兲 苷 2y兾共x y兲2, fy共x, y兲 苷 2x兾共x y兲2 w兾 苷 cos cos , w兾 苷 sin sin 2r 2 2rs ln共r 2 s 2 兲, fs共r, s兲 苷 2 25. fr共r, s兲 苷 2 r s2 r s2 27. u兾t 苷 e w兾t (1 w兾t), u兾w 苷 e w兾t 29. fx 苷 z 10xy 3z 4, fy 苷 15x 2 y 2z 4, fz 苷 x 20x 2 y 3z 3 31. w兾x 苷 1兾共x 2y 3z兲, w兾y 苷 2兾共x 2y 3z兲, w兾z 苷 3兾共x 2y 3z兲 33. u兾x 苷 y sin1 共 yz兲, u兾y 苷 x sin1 共 yz兲 xyz兾s1 y 2 z 2, u兾z 苷 xy 2兾s1 y 2 z 2 35. fx 苷 yz 2 tan共 yt兲, fy 苷 xyz 2 t sec 2共 yt兲 xz 2 tan共 yt兲, fz 苷 2xyz tan共 yt兲, ft 苷 xy 2z 2 sec 2共 yt兲 37. u兾xi 苷 xi兾sx 12 x 22 x n2 15. 17. 19. 21. 23. 39. 1 5 41. 1 4 43. fx 共x, y兲 苷 y 2 3x 2 y , fy 共x, y兲 苷 2xy x 3 z 3yz 2x z 3xz 2y , 苷 苷 x 2z 3xy y 2z 3xy z 1 y 2z 2 z z 47. , 苷 苷 x 1 y y 2z 2 y 1 y y 2z 2 (b) f 共x y兲, f 共x y兲 49. (a) f 共x兲, t共 y兲 51. fxx 苷 6xy 5 24x 2 y, fxy 苷 15x 2 y 4 8x 3 苷 fyx , fyy 苷 20x 3 y 3 53. wuu 苷 v 2兾共u 2 v 2 兲3兾2, wuv 苷 uv兾共u 2 v 2 兲3兾2 苷 wvu, wvv 苷 u 2兾共u 2 v 2 兲3兾2 55. zxx 苷 2x兾共1 x 2 兲 2, zxy 苷 0 苷 zyx , zyy 苷 2y兾共1 y 2 兲 2 45. z 0 A120 61. 63. 65. 69. 87. 93. |||| APPENDIX I ANSWERS TO ODD-NUMBERED EXERCISES 15. 7, 2 u x u y u u x u y u , , 苷 苷 17. r x r y r s x s y s u u x u y 苷 t x t y t 13. 62 12xy, 72xy 24 sin共4x 3y 2z兲, 12 sin共4x 3y 2z兲 e r共2 sin cos r sin 兲 67. 4兾共 y 2z兲 3 , 0 2 2 81. R 兾R 1 ⬇12.2, ⬇16.8, ⬇23.25 89. x 苷 1 t, y 苷 2, z 苷 2 2t No 2 w r w s w 苷 x r x s x w r w s w w 苷 y r y s y t 9 9 21. 85, 178, 54 23. 7 , 7 19. 95. (a) 0.2 z 0 _0.2 y 0 1 0 1 _1 x x 4y 4x 2y 3 y 5 x 5 4x 3y 2 xy 4 , fy共x, y兲 苷 2 2 2 共x y 兲 共x 2 y 2 兲2 (e) No, since fxy and fyx are not continuous. (b) fx 共x, y兲 苷 EXERCISES 14.4 N PAGE 899 1. z 苷 8x 2y 3. x y 2z 苷 0 5. z 苷 y 7. 9. 400 EXERCISES 14.6 1 _1 5 11. 2x 4 y 1 43. _5 0 2 2 x y 1 19. x y 37. 0 y 13. 9 x 9 y 1 2 15. 1 y 2 3 21. x y 7 z; 6.9914 ; 2.846 4T H 329; 129F dz 苷 3x 2 ln共 y 2 兲 dx 共2x 3兾y兲 dy dm 苷 5p 4q 3 dp 3p 5q 2 dq dR 苷 2 cos d 2 cos d 2 sin d 33. 5.4 cm 2 35. 16 cm 3 z 苷 0.9225, dz 苷 0.9 1 39. 17 ⬇ 0.059 41. 2.3% 150 1 苷 x, 2 苷 y 2 3 23. 25. 27. 29. 31. 0 7 3 20 3 3 7 PAGE 920 (b) 具2, 3 典 (c) s3 2 (b) 具1, 12, 0典 (c) 223 9. (a) 具e 2yz, 2xze 2yz, 2xye 2yz 典 11. 23兾10 13. 8兾s10 15. 4兾s30 17. 9兾 (2s5 ) 19. 2兾5 21. 4s2, 具1, 1 典 23. 1, 具0, 1典 25. 1, 具3, 6, 2 典 27. (b) 具12, 92典 29. All points on the line y 苷 x 1 31. (a) 40兾(3 s3 ) 327 (b) 具38, 6, 12 典 (c) 2 s406 33. (a) 32兾s3 35. 13 39. (a) x y z 苷 11 (b) x 3 苷 y 3 苷 z 5 y1 z1 x2 41. (a) 4x 5y z 苷 4 苷 苷 (b) 4 5 1 43. (a) x y z 苷 1 (b) x 1 苷 y 苷 z 45. 47. 具2, 3典 , 2x 3y 苷 12 3 0 x 0 _10 N 1. ⬇ 0.08 mb兾km 3. ⬇ 0.778 5. 2 s3兾2 7. (a) f 共x, y兲 苷 具2 cos共2x 3y兲, 3 cos共2x 3y兲典 z 0 z 200 10 sin共x y兲 e y 4共xy兲 3兾2 y 29. x 2x 2sxy sin共x y兲 xe y 3yz 2x 3xz 2y , 31. 2z 3xy 2z 3xy 2 2 z 1y z , 33. 1 y y 2z 2 1 y y 2z 2 35. 2C兾s 37. ⬇ 0.33 m兾s per minute (b) 10 m 2兾s (c) 0 m兾s 39. (a) 6 m3兾s 41. ⬇ 0.27 L兾s 43. 1兾 (12 s3 ) rad兾s 45. (a) z兾r 苷 共z兾x兲 cos 共z兾y兲 sin , z兾 苷 共z兾x兲r sin 共z兾y兲r cos 51. 4rs 2z兾x 2 共4r 2 4s 2 兲2z兾x y 4rs 2z兾y 2 2 z兾y 27. _1 (c) 0, 0 w t , t x t y 25. 36, 24, 30 2 7 6 y xy=6 EXERCISES 14.5 N PAGE 907 2 1. 共2x y兲 cos t 共2y x兲e t 3. 关共x兾t兲 y sin t兴兾s1 x 2 y 2 5. e y兾z 关2t 共x兾z兲 共2xy兾z 2 兲兴 7. z兾s 苷 2xy 3 cos t 3x 2 y 2 sin t, z兾t 苷 2sxy 3 sin t 3sx 2 y 2 cos t 9. z兾s 苷 t 2 cos cos 2st sin sin , z兾t 苷 2st cos cos s 2 sin sin 冉 冊 z s 11. 苷 e r t cos sin , s ss 2 t 2 t z sin 苷 e r s cos t ss 2 t 2 冉 冊 Î f (3, 2) 2x+3y=12 z 1 (3, 2) 0 0 x _1 1 x 2 1 y 2 53. No 59. x 苷 1 10t, y 苷 1 16t, z 苷 2 12t 63. If u 苷 具a, b典 and v 苷 具c, d 典 , then afx bfy and c fx d fy are known, so we solve linear equations for fx and fy .
© Copyright 2024 ExpyDoc